Existence theory for a fractional q-integral equations
Main Article Content
Abstract
The paper focuses on establishing sufficient conditions for the existence of the solutions for a functional equation involving q-fractional integrals, particularly in Banach spaces. In this method, the technique of measures of noncompactness and Petryshyn’s fixed point theorem Banach space is used. We provide some examples of equations, which confirm that our result is applicable to a wide class of integral equations.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
N. Adjimi, A. Boutiara, M. E. Samei, S. Etemad and S.Rezapour, On solutions of a hybrid
generalized Caputo-type problem via the measure of non-compactness in the generalized
version of Darbo’s theorem, J. Ineq. Appl., 2023 (2023), 34.
B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear
fractional q-difference integral equations with two fractional orders and nonlocal four point
boundary conditions, J. Franklin Instit. Engin. Appl. Math., 351 (2014), 2890–2909.
M. Al-Yami, Existence of solutions of q-perturbed quadratic integral equations, Amer. J.
Comput. Math., 6 (2016), 166–176.
A. Alsaedi, B. Ahmad and H. Al-Hutami, A study of nonlinear fractional q-difference
equations with nonlocal integral boundary conditions, Abst. Appl. Anal., 8 (2013), 410505,
pages.
J. Alzabut, B. Mohammadaliee and M. E. Samei, Solutions of two fractional q-integrodifferential
equations under sum and integral boundary value conditions on a time scale,
Adv. Differ. Equat., 2020 (2020), 304.
J. Banas and M. Lecko, Fixed points of the product of operators in Banach algebra,
Panamer. Math. J., 12 (2002), 101–109.
Bhupeshwar, D. Kumar Patel, M. Gabeleh and M. E. Samei, Existence of solutions for
Higher order Ψ-Hilfer boundary value problems, Comput. Appl. Math., 43 (2024), 155.
J. Caballero, A. B. Mingarelli and K. Sadarangani, Existence of solutions of an integral
equation of Chandrasekhar type in the theory of radiative transfer, Elect. J. Diff. Eq., 57
(2006), 1–11.
A. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Accad. Naz.
Linccei., 48 (1970), 195–198.
A. Das, B. Hazarika, V. Parvaneh and M. Mursaleen, Solvability of generalized fractional
order integral equations via measures of noncompactness, Math. Sciences, 15 (2021), 241–
A. Deep, S. Abbas, B. Sing,M. R. Alharthi and K. S. Nisar, Solvability of functional
stochastic integral equations via Darbo’s fixed point theorem, Alex. Engin. J., 60(6) (2021),
–5636.
R. J. Finkelstein, q-gauge theory, Int. J. Mod. Phys. A, 11(4) (1996), 733–746.
R. J. Finkelstein, Symmetry group of the hydrogen atom, J. Math. Phys., 8(3) (1967),
–449.
L. S. Goldenstein and A. S. Markus, On the measure of non-compactness of bounded sets
and of linear operators, Stud. Alg. Math. Anal., Izdat. ”Moldovenjaske”, Kishinev (1965),
–54.
K. N. Ilinski, G. V. Kalinin and A. S. Stepanenko, q-functional field theory for particles
with exotic statistics, Phys. Lett. A, 232(6) (1997), 399–408.
F. H. Jackson, q-Difference Equations, The Amer. J. Math., 32(4) (1910), 305–314.
M. Jleli, M. Mursaleen and B. Samet, Q-integral equations of fractional orders, Elect. J.
Differ. Equat., 2016(17) (2016), 1–14.
V. Kac and P. Cheung, Quantum Calculus, 2nd edition, Springer, New York, NY, USA,
M. Kazemi and R. Ezzati, Existence of solution for some nonlinear two-dimensional Volterra
integral equations via measures of noncompactness, Appl. Math. Comput., 275 (2016), 165–
M. Kazemi, R. Ezzati and A. Deep, On the solvability of non-linear fractional integral
equations of product type, J. Pseudo-Differ. Oper. Apll., 14 (2023), 39.
S. Kumar, H. Kumar Singh, B. Singh and V. Arora, Application of petryshyn’s fixed point
theorem of existence result for nonlinear 2D volterra functional integral equations, Differ.
Equat. Appl., 14(3) (2022), 487–497.
K. Kuratowski, Sur les espaces completes, Fund. Math., 15 (1934), 301–335.
X. Li, Z. Han and S. Sun, Existence of positive solutions of nonlinear fractional q-difference
equation with parameter, Adv. Differ. Equat., 2013 (2013), 260.
M. Metwali and K. Cicho’n, On solutions of some delay Volterra integral problems on a half
line, Nonlinear Anal. Model., 26 (2021), 661–677.
L. N. Mishra, R. P. Agarwal and M. Sen, Solvability and asymptotic behavior for some
nonlinear quadratic integral equation involving Erdelyi-Kober fractional integrals on the
unbounded interval, Prog. Fract. Differ. and Appl., 2 (2016), 153–168.
H. Nashine, R. Arab and R. Agarwal, Existence of solutions of system of functional integral
equations using measure of noncompactness, Int. J. Nonlinear Anal., 12 (2021), 583–595.
W. V. Petryshyn, Structure of the fixed points sets of k-set contractions, Arch. Rational
Mech. Anal., 40 (1971), 312–328.
N. Pongarm, S. Asawasamrit, J. Tariboon and S. K. Ntouyas, Multi strip fractional q-integral
boundary value problems for nonlinear fractional q-difference equations, Adv. Differ. Equat.,
(2014), 1–17.
P. Ramesh Patle, M. Gabeleh, V. Rakoˇcevi´c and M. E. Samei, New best proximity point
(pair) theorems via MNC and application to the existence of optimum solutions for a system
of ψ-Hilfer fractional differential equations, Revi. Real Acad. Cienc. Exact., F´ısi. Natural.
Serie A. Matem., 117 (2023), 124.
M. E. Samei, Existence of solutions for a system of singular sum fractional q-differential
equations via quantum calculus, Adv. Differ. Equat., 2020 (2020), 23.
M. E. Samei, Employing Kuratowski measure of non-compactness for positive solutions of
system of singular fractional q-differential equations with numerical effects, Filomat, 34(9)
(2020), 1–19.
M. E. Samei and W. Yang, Existence of solutions for k-dimensional system of multiterm
fractional q-integro-differential equations under anti-periodic boundary conditions via
quantum calculus, Math. Meth. Appl. Sci., 43(7) (2020), 4360–4382.
M. Sen, D. Saha and R. P. Agarwal, A Darbo fixed point theory ap- proach towards the
existence of a functional integral equation in a Banach algebra, Appl. Math. Comput., 358
(2019), 111–118.
H. M. Srivastava, A. Das, B. Hazarika and S. A. Mohiuddine, Existence of solutions for
nonlinear functional integral equation of two variables in Banach Algebra, Symmetry, 11
(2019), 674.