Inequalities for generalized normalized δ-Casorati curvatures of Quasi Bi-Slant Submanifolds of Generalized Complex Space Forms
Main Article Content
Abstract
In this article, we establish sharp inequalities involving generalized normalized δ-Casorati curvatures for quasi bi-slant submanifolds
in generalized complex space forms and also characterize the submanifolds for which the equality holds. In addition, we’ve extended the sam inequalities to other types of submanifolds within the same geometric space. These include slant, invariant, anti-invariant, semi-slant, hemislant and bi-slant submanifolds.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. A. Akyol and S. Beyendi, A note on quasi bi-slant submanifolds of cosymplectic manifolds,
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 2 (2020), 1508-1521.
M. A. Akyola, S. Beyendi, T. Fatima and Akram Ali, On Pointwise Quasi Bi-Slant Submanifolds,
Filomat, 19 (2022), 6687–6697.
P. Alegre and A. Carriazo, Slant submanifolds of para-Hermitian manifolds, Mediterr. J.
Math., 5 (2017), 1-14.
F. R. Al-Solamy, M. A. Khan, S. Uddin, Totally umbilical hemi-slant submanifolds of K¨ahler
manifolds, Abstr Appl. Anal., (2011), Art. ID 987157, 9.
M. Aquib, M. H. Shahid and M. Jamali, Lower extremities for generalized normalized δ-
Casorati Curvatures of bi-slant submanifolds in generalized complex space forms, Kragujevac
Journal of Mathematics, 4 (2018), 591–605.
M. Aquib, M. S. Lone, C. Neac¸su, G. E. Vilcu, On δ-Casorati curvature invariants of
Lagrangian submanifolds in quaternionic K¨ahler manifolds of constant q-sectional curvature,
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., (2023), 107-117.
D. Blair and A. Ledger, Quasi-umbilical, minimal submanifolds of of Euclidean space, Simon
Stevin, 51 (1977), 3-22.
A. Carriazo, Bi-slant immersions, Proc ICRAMS., 55 (2000), 88-97.
A. Carriazo, A new development in slant submanifold theory, Narasa Publishing Hause New
Delhi, India, (2002).
F. Casorati, Mesure de la courbure des surface suivant 1’idee commune. Ses rapports avec
les mesures de coubure gaussienne et moyenne, Acta Math. 14 (1999), 95-110.
B. Y. Chen, Slant immersions, Bulletin of the Australian Mathematical Society, 41(1), 1
(1990), 135–147.
B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, (1990).
B. Y. Chen, Some pinching and classification theorems for minimal submanifolds,Arch.
Math., 60 (1993), 568-578.
B. Y. Chen, A Riemannian invariant and its applications to submanifold theory, Results in
Mathematics, 27 (1995), 17-26.
B. Y. Chen, A general inequality for submanifolds in complex space forms and its applications,
Arch. Math., 67(1996), 519-528.
B. Y. Chen, Mean curvature and shape operator of isometric immersions in real-space-forms.
Glasg. Math. J., 38 (1996), 87–97.
B. Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with
arbitrary codimensions, Glasg. Math. J., 41(1)(1999), 33-41.
B. Y. Chen: Some new obstructions to minimal and Lagrangian isometric immersions.
Japan. J. Math., 26 (2000), 105–127.
B. Y. Chen, Recent developments in δ-Casorati curvature invariants, Turk. J. Math. 45
(2021), 1–46.
B. Y. Chen and A. M. Blaga, Recent developments on Chen–Ricci inequality in differential
geometry, Geometry of Submanifolds and Applications (eds. B.-Y. Chen, M. A. Choudhary
and M. N. I. Khan), Springer., (2024), 1-61.
M. Dajczer and A. Florit, On Chen’s basic equality, Illinois J. Math. 42 (1)(1998), 97-106.
S. Decu, S. Haesen and L. Verstralelen, Optimal inequalities involving Casorati curvatures,
Bull. Transylv. Univ. Brasov, Ser B., 49(2007), 85-93 .
S. Decu, S. Haesen and L. Verstralelen, Optimal inequalities characterizing quasi-umbilical
submanifolds, J. Inequalities Pure. Appl. Math”, 79(9)(2008).
A. Gray, Nearly K¨ahler manifolds, J. Differential Geometry, 4(1970), 283–309.
M. Gromov, Isometric immersions of Riemannian manifolds, in: The mathematical heritage
of ´Elie Cartan (Lyon, 1984). Ast´erisque 1985, Num´ero Hors S´erie, 129–133.
I. F. Harry, M. A. Lone, A. D. Vilcu, G. A. Vilcu, On some basic curvature invariants
of screen homothetic lightlike hypersurfaces in a GRW spacetime, Differ. Geom. Appl. 94
(2024), 102140.
D. Kowalczyk, Casorati curvatures, Bull. Transilvania Univ. Brasov Ser. III 50, 1 (2008),
-2013.
C. W. Lee, J. W. Lee, G. E. Vilcu and D. W. Yoon, Optimal inequalities for the Casorati
curvatures of the submanifolds of Generalized space form endowed with semi-symmetric
metric connections, Bull. Korean Math. Soc., 52 (2015), 1631-1647.
J. W. Lee, G. E. Vilcu, Inequalities for generalized normalized δ-Casorati curvatures of slant
submanifolds in quaternion space forms, Taiwanese J. Math. 19 (2015), 691-702.
J. S. Kim, Y. M Song and M. M. Tripathi, B. Y. Chen inequalities for submanifolds in
generalized complex space forms, Bull. Korean Math. Soc. 40(3) (2003), 411–423.
M. A. Lone, An inequality for generalized normalized-Casorati curvatures of slant submanifolds
in generalized complex space form. Balkan J. Geom. Appl. 22(1) (2017), 41–50.
M. A. Lone, Y. Matsuyama, F. R. Al-Solamy, M. H. Shahid and M. Jamali, Upper bounds
for Ricci curvatures for submanifolds of Bochner Kahler manifold, Tamkang J. Math., 1(51)
(2020), 53-67.
K. Matsumoto, I. Mihai and Y. Tazawa Ricci tensor on slant submanifolds in complex space
forms, Kodai Math. J., 26 (2003), 85–94.
A. Mihai, B.Y. Chen inequalities for slant submanifolds in generalized complex space forms,
Radovi Mathematicki, 12 (2004), 215–231.
J. F. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956),
–63.
C. D. Neacsu, On some optimal inequalities for statistical submanifolds of statistical space
forms, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 85 (1) (2023), 107–118.
R. Osserman, Curvature in the Eighties, Amer. Math. Monthly, 97 (1990), 731–756.
N. Papaghiuc, Semi-slant submanifolds of a Kaehlerian manifold, Scientifc Annals of the
Alexandru Ioan Cuza University of Iasi, s. I. a, Mathematics, 40(1) (1994), 55-61.
R. Prasad, M. A. Akyol, S. K. Verma and S. Kumar, Quasi bi-slant submanifolds of Kaehler
manifolds, Int. Electron. J. Geom., 15(1) (2022), 57-68.
S. S. Shukla and P. K. Rao, B. Y. Chen inequalities for bi-slant submanifolds in generalized
complex space forms, J. Nonlinear Sci. Appl., 3 (2010), 282-293.
A. Song and X. Liu, Some inequalities of slant submanifolds in generalized complex space
forms, Tamkang J. Math., 3(36) (2005), 223-229.
F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans.
Amer. Math. Soc., 267 (1981), 365–397.
M. M. Tripathi, Inequalities for algebraic Casorati curvatures and their applications. Note
Mat. 37(supp1), (2017), 161–186.
L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemann curvaturemtensor,
Rend. Sem. Mat. Univ. e Politec. Torino, 34 (1975/76), 487–498.
G. E. Vilcu, An optimal inequality for Lagrangian submanifolds in complex space forms
involving Casorati curvature, J. Math. Anal. Appl., 2(15) (2018), 1209-1222.
G. E. Vilcu, Classification of Casorati ideal Lagrangian submanifolds in complex space forms,
Differential Geometry and its Applications, 63 (2019), 30-49.
K. Yano, M. Kon, Anti-invariant submanifolds, Lecture notes in pure and applied mathematics,
no. 21, Marcel Dekker Inc., New York, (1976).