Weak solutions for the fractional Kirchhoff-type problem via Young measures

Main Article Content

IHYA TALIBI
Farah Balaadich
Brahim EL BOUKARI
Jalila El GHORDAF

Abstract

The aim of this paper is to investigate the existence of weak solutions to the following Kirchhoff-type problem:
$$\begin{cases}
M\left([u]_{s p}^p\right) (-\Delta)_p^s (u)=f(x,u) \quad &\text { in } \Omega,\\ u=0 \quad &\text { in } \mathbb{R}^n \backslash \Omega,
\end{cases}$$
where $\Omega\subset\mathbb{R}^n$, $0<s<1<p<\infty$, $[u]_{s p}$ is Gagliardo semi-norm, $M$ is a continuous function with value in $\mathbb{R}^+$, $f$ a given function and $(-\Delta)_p^s$ is the fractional $p$-Laplacian operator.
Under appropriate assumptions on the main functions, we
obtain the existence results by applying the Galerkin method combined with the theory of Young measures.

Article Details

How to Cite
TALIBI, I., Balaadich, F., EL BOUKARI, B., & El GHORDAF, J. (2025). Weak solutions for the fractional Kirchhoff-type problem via Young measures. Tamkang Journal of Mathematics. Retrieved from https://journals.math.tku.edu.tw/index.php/TKJM/article/view/5502
Section
Papers

References

R. A. Adams and J. J. Fournier, Sobolev spaces, Elsevier, 2003.

C. O. Alves, F. J. S. A. Corrˆea and G. M. Figueiredo, On a class of nonlocal elliptic problems

with critical growth, Differ. Equ. Appl., 2(2010), 409-417.

L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter

functionals, Manuscripta Mathematica, 134(2011), 377-403.

G. Autuori and P. Pucci, Kirchhoff systems with dynamic boundary conditions, Nonlinear

Analysis: Theory, Methods and Applications, 73(2010), 1952-1965.

G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems,

Archive for rational mechanics and analysis, 196(2010), 489-516.

E. Azroul, A. Benkirane and M, srati, Three solutions for a Kirchhoff-type problem involving

nonlocal fractional p-Laplacian. In Advances in Operator Theory, 4(2019), 821–835.

E. Azroul and F. Balaadich, Existence of solutions for a class of Kirchhoff-type equation via

Young measures, Numerical Functional Analysis and Optimization, 42(2021), 460-473.

E. Azroul F. Balaadich, On strongly quasilinear elliptic systems with weak monotonicity,

Journal of Applied Analysis, 27(2021), 153-162.

E. Azroul and F. Balaadich, A weak solution to quasilinear elliptic problems with perturbed

gradient, Rendiconti del Circolo Matematico di Palermo Series 2, 70(2021), 151-166

F. Balaadich and E. Azroul Quasilinear elliptic systems in perturbed form, International

Journal of Nonlinear Analysis and Applications, 10(2019), 255-266.

F. Balaadich and E. Azroul, Elliptic Systems of p-Laplacian Type, Tamkang Journal of

Mathematics, 53(2022), 11-21.

F. Balaadich and E. Azroul, Existence results for fractional p-Laplacian systems via young

measures, Mathematical Modelling and Analysis, 27(2022), 232-241.

B. Barrios, E. Colorado, A. De Pablo and U. S´anchez, On some critical problems for the

fractional Laplacian operator, Journal of Differential Equations, 252(2012), 6133-6162.

G. M. Bisci, Fractional equations with bounded primitive, Applied Mathematics Letters,

(2014), 53-58.

G. M. Biscia and D. Repovˇs, Higher nonlocal problems with bounded potential, Journal of

Mathematical Analysis and Applications, 420(2014), 167-176.

L. A. Caffarelli, J. M. Roquejoffre, and O. Savin, Nonlocal minimal surfaces, Communications

on Pure and Applied Mathematic, 63(2010), 1111-1144.

X. Chang and Z. Q. Wang, Ground state of scalar field equations involving a fractional

Laplacian with general nonlinearity, Nonlinearity, 26(2013), 479.

W. Chen and S. Deng, Existence of solution for a Kirchhoff type problem involving the fractional

p-Laplace operator, Electronic Journal of Qualitative Theory of Differential Equations,

(2015), 1-8.

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, Journal of Mathematical

Analysis and Applications, 265(2002), 229-248.

G. Dolzmann, N. Hungerb¨uhler and S. M¨uller, Non-linear elliptic systems with measurevalued

right hand side, Math. Z., 226(1997), 545–574.

G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical

growth via truncation argument, Journal of Mathematical Analysis and Applications,

(2013), 706-713.

A. Fiscella and R. Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces,

Ann. Acad. Sci. Fenn. Math., 40(2015), 235-253.

A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator,

Nonlinear Analysis: Theory, Methods and Applications, 94(2014), 156-170.

N. Hungerb¨uhler, A refinement of Ball’s theorem on Young measures, New York J. Math.,

(1997), 53.

A. Iannizzotto and M. Squassina, 12-Laplacian problems with exponential nonlinearity, Journal

of Mathematical Analysis and Applications, 414(2014), 372-385.

F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems

via critical point theory, Computers Mathematics with Applications, 62(2011), 1181-1199.

G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883.

J.L. Lions, Quelques m´ethodes de r´esolution de probl`emes aux limites non lin´eaires, ´Etudes

math´ematiques, 1969.

Y. Liu, Z. Liu, C. F. Wen and J. C. Yao, Existence of solutions for non-coercive variationalhemivariational

inequalities involving the nonlocal fractional p-Laplacian, Optimization,

(2022), 485-503.

X. Mingqi, G. M. Bisci, G. Tian and B. Zhang, Infinitely many solutions for the stationary

Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29(2016), 357.

K. Ho, K. Perera, I. Sim and M. Squassina, A note on fractional p-Laplacian problems with

singular weights, Journal of Fixed Point Theory and Applications, 19(2017), 157-173.

H. Qiu and M. Xiang, Existence of solutions for fractional p-Laplacian problems via Leray-

Schauder’s nonlinear alternative, Boundary Value Problems, 2016(2016), 1-8.

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, Journal

of Mathematical Analysis and Applications, 389(2012), 887-898.

I. Talibi, B. El Boukari and J El Ghordaf, Existence of weak solutions to the fractional

p-Laplacian problems of Kirchhoff-type via topological degree, Boletim da Sociedade

Paranaense de Matematica, 43(2025), 1-10.

I. Talibi, F. Balaadich, B. El Boukari, and J. El Ghordaf, On the fractional p-Laplacian

problem via Young measures, Khayyam Journal of Mathematics, 10(2024) (2), 337-348.

I. Talibi, B. El Boukari, J. El Ghordaf, A. Taqbibt and F. Balaadich, Kirchhoff-type problem

involving the fractional p-Laplacian via Young measures, Filomat, 38 (2024), 8211-8223.

I. Talibi, F. Balaadich, B. El Boukari, and J. El Ghordaf, On weak solutions to parabolic

problem involving the fractional p-Laplacian via Young measures, In Annales Mathematicae

Silesianae, (2024).

K. Teng, Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic

operators, Nonlinear Analysis: Real World and Applications, 14(2013), 867-874.

M. Xiang, B. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving

the non-local fractional p-Laplacian, Journal of Mathematical Analysis and Applications,

(2015), 1021-1041.

M. Xiang, B. Zhang and V. D. R˘adulescu, Multiplicity of solutions for a class of quasilinear

Kirchhoff system involving the fractional p-Laplacian, Nonlinearity, 29(2016), 3186.

J. Zhang, D. Yang and Y. Wu, Existence results for a Kirchhoff-type equation involving

fractional p(x)-Laplacian, AIMS Mathematics, 6(2021), 8390-8404.

J. Zuo, T. An and M. Li, Superlinear Kirchhoff-type problems of the fractional p-Laplacian

without the (AR) condition, Boundary Value Problems, 2018, 1-13.

Most read articles by the same author(s)