A new hybrid generalization of orthogonal polynomials
Main Article Content
Abstract
In this paper, we introduce and study hybrinomials defined by application of orthogonal polynomials. Using selected orthogonal polynomials and hybrid numbers operators, we define Hermite, Laguerre, Legendre and Chebyshev type hybrinomials and present some properties of them.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
P. Borwein and T. Erd´elyi, Polynomials and Polynomial Inequalities, Springer-Verlag, New
York, 1995.
D. Br´od and M. Rubajczyk and A. Szynal-Liana, A new hybrid generalization of balancing
polynomials, Symmetry, 16(10) (2024), 1397. https://doi.org/10.3390/sym16101397
A. Bultheel and A. Cuyt and W. Van Assche and M. Van Barel and B. Verdonk, Generalizations
of orthogonal polynomials, J. Comput. Appl. Math., 179 (2005), 57–95.
https://doi.org/10.1016/j.cam.2004.09.036
T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York,
G. B. Djordjevi´c and G. V. Milovanovi´c, Special classes of polynomials, University of Niˇs,
Faculty of Technology Leskovac, 2014.
W. Gautschi, On mean convergence of extended Lagrange interpolation, J. Comput. Appl.
Math., 43 (1992), 19–35. https://doi.org/10.1016/0377-0427(92)90257-X
U. W. Hochstrasser, Orthogonal Polynomials, in Handbook of Mathematical Functions
With Formulas, Graphs, and Mathematical Tables, Dover Publications, 1974.
C. Kızılate¸s, A note on Horadam hybrinomials, Fundam. J. Math. Appl., 5(1) (2022), 1–9.
https://dx.doi.org/10.33401/fujma.993546
C. Kızılate¸s and W-S Du and N. Terzioˇglu On Higher-Order Generalized Fibonacci Hybrinomials:
New Properties, Recurrence Relations and Matrix Representations, Mathematics,
(8) (2024), 1156. https://doi.org/10.3390/math12081156
T. H. Koornwinder, Orthogonal Polynomials in Computer Algebra in Quantum Field
Theory, Springer-Verlag, 2013, 145–170.
Y. Li, On Chebyshev Polynomials, Fibonacci Polynomials, and Their Derivatives, J. Appl
Math., 2014 (2014). https://doi.org/10.1155/2014/451953.
Y. Li, Some properties of Fibonacci and Chebyshev polynomials, Adv. Differ Equ. (2015),
J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & HALL/CRC,
Florida, 2003.
M. ¨ Ozdemir, Introduction to Hybrid Numbers, Adv. Appl. Clifford Algebr., 28:11 (2018).
https://doi.org/10.1007/s00006-018-0833-3
G. M. Philips, Interpolation and Approximation by Polynomials, Springer-Verlag, New
York, 2003.
E. Sevgi, The bivariate Horadam polynomials and hybrinomials, Authorea. March, 30
(2022). https://doi.org/10.22541/au.164864866.60338865/v1.
G. Szeg˝o, Orthogonal Polynomials, 4th edition, American Mathematical Society, Providence,
A. Szynal-Liana and I. W loch, Introduction to Fibonacci and Lucas hybrinomials, Complex
Var. Elliptic Equ., 65(10) (2020), 1736–1747. https://doi.org/10.1080/17476933.2019.
Y. Ta¸syurdu and A. S¸ahin, On Generalized Fibonacci Hybrinomials, Comm. Math. Appl.,
(2) (2022), 737–751. https://doi.org/10.26713/cma.v13i2.1706