The Legendrian Self-Expander in the Standard Contact Euclidean Five-space
Main Article Content
Abstract
Based on the geometric correspondence between Lagrangian and Legendrian submanifolds, we construct Legendrian 2-submanifolds in the standard contact Euclidean Five-space $\mathbb{R}^{5} $ satisfying the self-similarity equation $H+\theta\xi=\alpha{F}^{\perp}(\alpha>0) $, with particular focus on their self-expander solutions under Legendrian mean curvature flow. This paper mainly generalizes Theorem C of the work by Joyce-Lee-Tsui.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
@article{anciaux2006construction,
title={Construction of Lagrangian self-similar solutions to the mean curvature flow in $ mathbb{C}^{n} $},
author={Anciaux, Henri},
journal={Geometriae Dedicata},
volume={120},
number={1},
pages={37--48},
year={2006},
publisher={Springer}
}
@book{blair2010riemannian,
title={Riemannian geometry of contact and symplectic manifolds},
author={Blair, David E},
volume={203},
year={2010},
publisher={Birkhäuser},
address={Boston}
}
@article{cao2013gap,
title={A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension},
author={Cao, Huai-Dong and Li, Haizhong},
journal={Calculus of Variations and Partial Differential Equations},
volume={46},
pages={879--889},
year={2013},
publisher={Springer}
}
@article{castro2014clifford,
title={The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow},
author={Castro, Ildefonso and Lerma, Ana M},
journal={International Mathematics Research Notices},
volume={2014},
number={6},
pages={1515--1527},
year={2014},
publisher={OUP}
}
@article{castro2007minimal,
title={Minimal Lagrangian surfaces in $ mathbb{S}^{2}timesmathbb{S}^{2} $},
author={Castro, Ildefonso and Urbano, Francisco},
journal={Communications in Analysis and Geometry},
volume={15},
number={2},
pages={217},
year={2007},
publisher={INTERNATIONAL PRESS}
}
@article{chang2024legendrian,
title={Legendrian Mean Curvature Flow in $eta$-Einstein Sasakian Manifolds},
author={Chang, Shu-Cheng and Han, Yingbo and Wu, Chin-Tung},
journal={The Journal of Geometric Analysis},
volume={34},
number={3},
pages={89},
year={2024},
publisher={Springer}
}
@article{chang2023smale,
title={The Smale Conjecture and Minimal Legendrian Graph in $ mathbb{S}^{2}timesmathbb{S}^{3} $ },
author={Chang, Shu-Cheng and Wu, Chin-Tung and Zhang, Liuyang},
journal={arXiv preprint arXiv:2312.15996},
year={2023}
}
@article{chang2025shrinker,
title={The Classification of Legendrian Self-Shrinkers In the Standard Contact Euclidean Five-Space},
author={Chang, Shu-Cheng and Wu, Chin-Tung and Zhang, Liuyang and Qiuxia Zhang},
journal={preprint},
year={2025},
}
@article{ding2014rigidity,
title={The rigidity theorems of self-shrinkers},
author={Ding, Qi and Xin, YL},
journal={Transactions of the American Mathematical Society},
volume={366},
number={10},
pages={5067--5085},
year={2014}
}
@article{joyce2010self,
title={Self-similar solutions and translating solitons for Lagrangian mean curvature flow},
author={Joyce, Dominic and Lee, Yng-Ing and Tsui, Mao-Pei},
journal={Journal of Differential Geometry},
volume={84},
number={1},
pages={127--161},
year={2010},
publisher={Lehigh University}
}
@article{lawlor1989angle,
title={The angle criterion},
author={Lawlor, Gary},
journal={Inventiones mathematicae},
volume={95},
number={2},
pages={437--446},
year={1989},
publisher={Springer}
}
@article{li2017new,
title={New characterizations of the Clifford torus as a Lagrangian self-shrinker},
author={Li, Haizhong and Wang, Xianfeng},
journal={The Journal of Geometric Analysis},
volume={27},
pages={1393--1412},
year={2017},
publisher={Springer}
}
@article{smoczyk2003closed,
title={Closed Legendre geodesics in Sasaki manifolds},
author={Smoczyk, Knut},
journal={New York J. Math},
volume={9},
number={41},
pages={23--47},
year={2003}
}
@article{sun2020sphere,
title={Sphere theorems for Lagrangian and Legendrian submanifolds},
author={Sun, Jun and Sun, Linlin},
journal={Calculus of Variations and Partial Differential Equations},
volume={59},
number={4},
pages={125},
year={2020},
publisher={Springer}
}
@article{warren2008liouville,
title={A Liouville type theorem for special Lagrangian equations with constraints},
author={Warren, Micah and Yuan, Yu},
journal={Communications in Partial Differential Equations},
volume={33},
number={5},
pages={922--932},
year={2008},
publisher={Taylor & Francis}
}