A contraction theorem in menger space
Main Article Content
Abstract
The main purpose of this paper is to prove common fixed point theorem satisfying a new contraction type condition in Menger space.
Article Details
References
S. S. Chang, Y. J. Cho and S.M. Kang,NonlinearOperator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Huntington,USA, 2001.
G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. & Math. Sci., 9 (1986), 771–773.
G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), 227–238.
K.Menger, Statistical metric, Proc. Nat. Acad. (USA) 28 (1942), 535–537.
S. N. Mishra, Common fixed points of compatible mappings in probabilistic metric spaces, Math. Japon., 36 (1991), 283–289.
D. O’Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., 195 (2008), 86–93.
B. D. Pant and S. Chauhan, A contraction theoreminMenger space using weak compatibility, Int. J.Math. Sci. & Engg. Appls., 4 (2010), 177–186.
B. Schweizer and A. Sklar, Statisticalmetric spaces, Pacific J.Math., 10 (1960), 313–334.
B. Schweizer and A. Sklar, ProbabilisticMetric Spaces, Elsevier, North-Holland,New York, 1983.
V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mappings on probabilistic metric spaces, Math. SystemTheory, 6 (1972), 97–102.
S. Shakeri, A contraction theorem in Menger probabilistic metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 189–193.
B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl., 301 (2005), 439–448.