Weakly primal graded superideals

Main Article Content

Ameer Ahmad Jaber

Abstract

Let $G$ be an abelian group and let $R$ be a commutative $G$-graded super-ring (briefly, graded super-ring) with unity $1\not=0$. We say that $a\in h(R)$, where $h(R)$ is the set of homogeneous elements in $R$, is {\it weakly prime} to a graded superideal $I$ of $R$ if $0\not=ra\in I$, where $r\in h(R)$, then $r\in I$. If $\nu(I)$ is the set of homogeneous elements in $R$ that are not weakly prime to $I$, then we define $I$ to be weakly primal if $P=\bigoplus_{g\in G}(\nu(I)\cap R_g^0+\nu(I)\cap R_g^1)\cup\{0\}$ forms a graded superideal of $R$. In this paper we study weakly primal graded superideals of $R$. Moreover, we classify the relationship among the families of weakly prime graded superideals, primal and weakly primal graded superideals of $R$.

Article Details

How to Cite
Jaber, A. A. (2012). Weakly primal graded superideals. Tamkang Journal of Mathematics, 43(1), 123–135. https://doi.org/10.5556/j.tkjm.43.2012.658
Section
Papers
Author Biography

Ameer Ahmad Jaber, Department ofMathematics, The Hashemite University, Zarqa 13115, Jordan.

Assitant Prof.,
Department ofMathematics,
The Hashemite University

References

D. Anderson and E. Smith, Weakly prime ideals, Houston, J. Math. 29(2008), 831-840.

S. E. Atani, On graded prime submodules, Chaing Mai J. Sci., 33(1) (2006), 3-7.

S. E. Atani, On graded weakly prime ideals, Turkish Journal of Mathematics, 30(2006), 351-358.

Y. A. Bahturin, A. Giambruno, Group gradings on associative algebras with involution, DOI:10.4153/CMB-2008-020-7, Canad. Math. Bull., 51(2008), 182-194.

M. Behboodi, H. Koohi, Weakly prime submodules, Vietnam J. Math., 32(2)(2004), 185-195.

L. Fuchs, On primal ideals, Amer. Math. Soc. 1(1950), 1-6.

M. E. Moore, S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30(10)(2002), 5037-5064.

P. F. Smith, Primary modules over commutative rings, Glasgow Math. J., 43(2001), 103-111.