A reaction-diffusion system and its shadow system describing harmful algal blooms
Main Article Content
Abstract
Article Details
References
R. A. Adams, Sobolev Spaces, Academic Press, 1975.
S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, Princeton, 1965.
H. Brezis, Analyse Fonctionnelle, Theorie et applications, (2nd ed.) Masson, Paris, 1983.
E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35(1978), 1--16.
E. J. Doedel and B. E. Oldeman et al. AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University, Montreal, 2010.
A. Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York, 1969.
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York, 2001.
G. E. Hutchinson, The Paradox of the Plankton, Am. Nat., 95(1961), 137--145.
H. Ikeda, M. Mimura and T. Scotti, Shadow system approach to a plankton model generation harmful algal bloom, manuscript.
Y. Kan-on, Global bifurcation structure of positive stationary solutions for a classical Lotka-Volterra competition model with diffusion, Japan J. Indust. Appl. Math., 20(2003), 285--310.
W. E. A. Kardinaal, L. Tonk, I. Janse, S. Hol, P. Slot, J. Huisman and P. M. Visser, Competition for Light between Toxic and Nontoxic Strains of the Harmful Cyanobacterium Microcystis, Appl. Environ. Microbiol.,73(2007), 2939--2946.
K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential
Equations, 58(1985), 15-21.
Y. Miyamoto, Upper semicontinuity of the global attractor for the Gierer--Meinhardt model, J. Differential Equations, 223(2006), 185--207.
Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13(1982), 555--593.
M. Pierre, Global Existence in Reaction-Diffusion Systems with Control of Mass: A Survey, Milan J. Math., 78(2010), 417--455.
F. Rothe, Global solutions of reaction-diffusion systems, Lecture Notes in Math. 1072, Springer-Verlag, Berlin, New York, 1984.
T. Scotti, M. Mimura and J. Y. Wakano, Avoiding toxic prey may promote harmful algal blooms, Ecological Complexity, 21(2015), 157--165.
A. M. Turing, The Chemical Basis of Morphogenesis, Phil.Transaction of the Royal Society of London, Series (B): Biological Sciences, 237(1952), 37--72.
N. Tarfulea and A. Minut, Qualitative analysis of a diffusive prey-predator model, Appl. Math. Lett., 25(2012), 803--807.