On the multiplicity of the eigenvalues of the vectorial Sturm-Liouville equation

Main Article Content

Chien-Wen Lin

Abstract

Let $ Q(x) $ be a continuous $ m\times m $ real symmetric matrix-valued function defined on $ [0,1] $, and denote the Sturm-Liouville operator $ -\frac{d^2}{dx^2}+Q(x) $ as $ L_Q $ with $ Q(x)$ as its potential function. In this paper we prove that for each Dirichlet eigenvalue $ \lambda_* $ of $L_Q$, the geometric multiplicity of $ \lambda_* $ is equal to its algebraic multiplicity. Applying this result, we get a necessary and sufficiently condition such that each Dirichlet eigenvalue of $ L_Q $ is of multiplicity $ m $.

Article Details

How to Cite
Lin, C.-W. (2011). On the multiplicity of the eigenvalues of the vectorial Sturm-Liouville equation. Tamkang Journal of Mathematics, 42(3), 265–274. https://doi.org/10.5556/j.tkjm.42.2011.764
Section
Special Issue

References

V. A. Ambarzumyan, "{U}ber eine Frage der Eigenwerttheorie, Z. Phys.,53(1929), 690--695.

L. Bers, On Trace Formula, Lecture Notes in Mathematics Vol 925. The Riemann Problem, Springer-Verlag, 1980.

H.-H. Chern and C.-L. Shen, On the $n$-dimensional Ambarzumyan's theorem, Inverse Problems, 13(1997), 15--18.

I. Gohberg and S. Gohberg, Basic Operator Theory, (Basel: Birkh"{a}user), 1981.

I. Gohberg, S. Gohberg and M. A. Kaashoek, Classes of Linear Operator vol.1 Birkh"{a}user, Basel, 1990.

J. P"{o}schel and E. Trubowitz, Inverse Spectral Theory, Academic, New York, 1987.

C.-L. Shen and C.-T. Shieh, Two inverse eigenvalue problems for vectorial Sturm-Liouville equations, Inverse

Problems, 14 (1998), 1331--1343.

C-L. Shen, Some inverse spectral problems for vectorial Sturm-Liouville equations, Inverse Problems, 17(2001), 1253--1294.