Reconstruction of the Sturm-Liouville operators on a graph with $\delta'_s$ couplings

Main Article Content

ChuanFu Yang

Abstract

Inverse nodal problems consist in constructing operators from the given zeros of their eigenfunctions. In this work, we deal with the inverse nodal problems of reconstructing the Sturm- Liouville operator on a star graph with $\delta'_s $ couplings at the central vertex. The uniqueness theorem is proved and a constructive procedure for the solution is provided from a dense subset of zeros of the eigenfunctions for the problem as a data.

Article Details

How to Cite
Yang, C. (2011). Reconstruction of the Sturm-Liouville operators on a graph with $\delta’_s$ couplings. Tamkang Journal of Mathematics, 42(3), 329–342. https://doi.org/10.5556/j.tkjm.42.2011.773
Section
Special Issue

References

Borg, G.: Uniqueness theorems in the spectral theory of $y''+(lambda-q(x))y=0$, in Proc. 11th Scandinavian Congress of Mathematicians (Oslo: Johan Grundt Tanums Forlag), 276--287 (1952).

Borman, J. and Kurasov, P.: Symmetries of quantum graphs and the inverse scattering problem, Adv. in Appl. Math. 35, 58--70 (2005).

Browne P. J. and Sleeman B. D.: Inverse nodal problem for Sturm-Liouville equation with eigenparameter dependent boundary conditions, Inverse Problems 12, 377--381 (1996).

Brown, B.~M. and Weikard, R.: A Borg-Levinson theorem for trees, Proc. Royal Soc. London Ser. A 461, 3231--3243 (2005).

Buterin S. A. and Shieh C. T.: Inverse nodal problem for differential pencils, Applied Mathematics Letters 22, 1240--1247 (2009).

Carlson, R.: Large eigenvalues and trace formulas for

matrix Sturm-Liouville problems, SIAM J. Math. Anal. 30, 949--962 (1999).

Chen Y. T., Cheng Y. H., Law C. K. and Tsay J.: $L^1$

convergence of the reconstruction formula for the potential

function, Proc. Amer. Math. Soc. 130, 2319--2324 (2002).

Cheng Y.~H.~, Reconstruction of the Sturm-Liouville

operator on a p-star graph with nodal data, Rocky Mountain Journal of Mathematics, to appear.

Cheon T., Exner P.: An approximation to $delta'$ couplings on graphs, J. Phys. A: Math. Gen. 37, L329--L335 (2004).

Cheng Y.~H., Law C.~K. and Tsay J.: Remarks on a new inverse nodal problem, J. Math. Anal. Appl. 248, 145--155 (2000).

Currie S. and Watson B. A.: Inverse nodal problems for Sturm-Liouville equations on graphs, Inverse Problems 23, 2029--2040 (2007).

Exner, P.: Lattice Kronig-Penney models, Phys. Rev. Lett. 74, 3503--3506 (1995).

Exner, P.: Contact interactions on graph superlattices, J. Phys. A: Math. Gen. 29, 87--102 (1996).

Hald O. H. and McLaughlin J. R.: Solutions of inverse nodal problems, Inverse Problems 5, 307--347 (1989).

Hochstadt H. and Lieberman B.: An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34, 676--680 (1978).

Horv$acute{a}$th, M.: Inverse spectral problems and

closed exponential systems, Ann. Math. 162, 885--918 (2005).

Kostrykin, V. and Schrader, R.: Kirchhoff's rule for

quantum wires, J.~Phys.~A: Math.~Gen. 32, 595--630 (1999).

Kostrykin, V. and Schrader, R.: Quantum wires with

magnetic fluxes, Commun.~Math.~Phys. 237, 161--179 (2003).

Koyunbakan H.: A new inverse problem for the diffusion operator, Applied Mathematics Letters 19, 995--999 (2006).

Kuchment, P.: Quantum graphs I. Some basic structures, Waves Random Media 14, 107--128 (2004).

Kuchment, P.: Quantum graphs II. Some spectral properties of quantum and combinatorial graphs, J.~Phys.~A: Math.~Gen. 38, 4887--4900 (2005).

[ Kurasov, P.: Schr$ddot{o}$dinger operators on graphs and geometry I. Essentially bounded potentials, Report N9, Dept. of Math., Lund Univ. (2007).

Kurasov, P. and Nowaszyk, M.: Inverse spectral problem for quantum graphs, J. Phys. A: Math. Gen. 3, 4901--4915 (2005). Corrigendum: J. Phys. A: Math. Gen. 39, 993 (2006)

Law C. K., Shen C. L. and Yang C. F.: The inverse nodal problem on the smoothness of the potential function, Inverse Problems 15, 253--263 (1999); Errata, 17, 361-364 (2001).

Law C. K. and Tsay J.: On the well-posedness of the inverse nodal problem, Inverse Problems 17, 1493-1512 (2001).

Law C. K. and Yang C. F.: Reconstructing the potential

function and its derivatives using nodal data, Inverse Problems 14 (2), 299-312 (1998).

Levin B.~Ja.: Distribution of zeros of entire functions, AMS Transl. Vol.5, Providence, 1964.

Levitan, B.~M. and Gasymov, M.~G.: Determination of a differential equation by two of its spectra, Usp.~ Mat.~ Nauk 19, 3--63 (1964).

Marchenko, V.~A.: Sturm-Liouville Operators and

Applications (Operator Theory: Advances and Applications,22), Birkh"{a}user, Basel, 1986.

McLaughlin J. R.: Inverse spectral theory using nodal

points as data--a uniqueness result, J. Differential Equations 73, 354--362 (1988).

Naimark, K. and Solomyak, M.: Eigenvalue estimates for the weighted Laplacian on metric trees, Proc.~London~Math.~Soc. 80, 690--724 (2000).

Pivovarchik, V.~N.: Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J.~Math.~Anal. 32, 801--819 (2000).

Shen C. L.: On the nodal sets of the eigenfunctions of the string equations, SIAM J. Math. Anal. 19, 1419--1424 (1988).

%

Shen C. L. and Shieh C. T.: An inverse nodal problem for vectorial Sturm-Liouville equation, Inverse Problems 16, 349--356 (2000).

Shieh C. T. and Yurko V. A.: Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl. 347, 266--272 (2008).

Simon, B.: A new approach to inverse spectral theory I. Fundamental formalism, Ann.~Math. 150, 1029--1057 (1999).

Yang X. F.: A solution of the inverse nodal problem,

Inverse Problems 13, 203--213 (1997).

Yang C.~F.: Inverse spectral problems for the

Sturm-Liouville operator on a $d$-star graph, J.~Math.~Anal.~Appl., 365, 742--749 (2010).

Yang C.~F., Huang Z.~Y. and Yang X.~P.: Trace formulae for Schr"{o}dinger systems on graphs, Turk.~J.~Math., 34, 181--196 (2010).

Yurko, V.~A: Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems 21, 1075--1086 (2005).

Yurko, V.~A.: Inverse nodal problems for Sturm-Liouville operators on star-type graphs, J.~Inv.~Ill-Posed Problems 16, 715--722 (2008).

Yurko V.~A.: Inverse nodal problems for Sturm-Liouville operators on a star-type graph, Siberian Mathematical Journal 50 (2009), 373--378.