Double-diffusive convection in a viscoelastic fluid

Main Article Content

Pardeep Kumar
Hari Mohan

Abstract

The double-diffusive convection in an Oldroydian viscoelastic fluid is mathematical investigated under the simultaneous effects of magnetic field and suspended particles through porous medium. A sufficient condition for the invalidity of the `principle of exchange of stabilities' is derived, in the context, which states that the exchange principle is not valid provided the thermal Rayleigh number $R$, solutal Rayleigh number$R_S$, the medium permeability $P_1$ and the suspended particles parameter $B$ are restricted by the inequality $\frac{BP_1}{\pi^2}(R+R_S)<1$.

Article Details

How to Cite
Kumar, P., & Mohan, H. (2012). Double-diffusive convection in a viscoelastic fluid. Tamkang Journal of Mathematics, 43(3), 365–374. https://doi.org/10.5556/j.tkjm.43.2012.800
Section
Papers
Author Biographies

Pardeep Kumar, Department ofMathematics, ICDEOL, Himachal Pradesh University, Shimla-171005, India.

Department ofMathematics, ICDEOL, Himachal Pradesh University, Shimla-171005, India.

Hari Mohan, Department ofMathematics, ICDEOL, Himachal Pradesh University, Shimla-171005, India.

Department ofMathematics, ICDEOL, Himachal Pradesh University, Shimla-171005, India.

References

O.M. Phillips, Flow and Reaction in Permeable Rocks, Cambridge University Press,Cambridge, UK, 1991.

D. B. Ingham and I. Pop, Transport Phenomena in Porous Medium, Pergamon Press, Oxford, UK, 1998.

D.A. Nield and A. Bejan, Convection in Porous Medium (2nd edition), Springer Verlag, New York, USA, 1999.

S.Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1981.

G. Veronis', On finite amplitude instability in thermohaline convection, J. Marine Res., 23(1965), 1--17.

H. Tabor and R. Matz, Solar pond project, Solar Energy, 9(1965), 177--182.

T. G. L. Shirtcliffe, Thermosolutal convection: Observation of an overstable mode, Nature (London), 213(1967), 489--490.

P. F. Lister, On the thermal balance of a mid--ocean ridge, Geophys. J. Roy. Astr. Soc., 26(1972),515--535.

J. A. M. McDonnel, Cosmic Dust, Johan Wiley and Sons, Toronto, 1978, 330pp.

J. W. Scanlon and L. A. Segel, Some effects of suspended particles on the onset of Be'nard convection, Phys. Fluids, 16 (1973), 1573--1578.

V. I. Palaniswamy and C. M. Purushotham, Stability of shear flow of stratified fluids with fine dust, Phys. Fluids, 24(1981), 1224--1229.

Z. Alloui, P. Vasseur, L. Robillard and A. Bahloul, Onset of double--diffusive convection in a horizontal Brinkman cavity, Che. Eng. Comm., 197(2010),387--399.

C. M. Vest and V. S. Arpaci, Overstability of a viscoelastic fluid layer heated from below, J. Fluid Mech., 36(1969), 613--619.

P. K. Bhatia and J. M. Steiner, Convective instability in a rotating viscoelastic fluid layer, Z. Angew. Math. Mech., 52(1972), 321--324.

B. A. Toms and D. J. Strawbridge, Elastic and viscous properties of dilute solutions of polymethyl methacrylate in organic liquids, Trans. Faraday Soc., 49(1953), 1225--1232.

I. A. Eltayeb, Convective instability in a rapidly rotating viscoelastic layer, Z. Angew. Math. Mech., 55(1975),599--604.

R. C. Sharma, Effect of rotation on thermal instability of a viscoelastic fluid}, Acta Phys. Hung., 40(1976), 11--17.

R. C. Sharma, Thermal instability in a viscoelastic fluid in hydromagnetics, Acta Phys. Hung., 38 (1975),293--298.

R. C. Sharma and V. K. Bhardwaj, Thermosolutal instability of an Oldroydian viscoelastic fluid in porous medium, Acta Phys. Hung., 73 (1993), 225--235.

P. Kumar, H. Mohan and G. J. Singh, Rayleigh—Taylor instability of rotating Oldroydian viscoelastic fluids in porous medium in presence of a variable magnetic field, Trans. Porous Media, 56 (2004), 199--208.

S. Wang, and W. Tan, Stability of double—diffusive convection of Maxwell fluid in a porous medium heated from below, Phys. Lett. A, 372 (2008), 3046--3050.

G. N. Sekhar and G. Jayalatha, Elastic effects on Rayleigh--Benard convection in liquids with temperature—dependent viscosity, Int. J. Thermal Sci., 49(2010), 67--75.

P. G. Siddheshwar, G. N. Sekhar and G. Jayalatha, Effect of time--periodic vertical oscillations of the Rayleigh—Benard system on nonlinear convection in viscoelastic liquids, J. Non--Newtonian Fluid Mech., 165 (2010), 1412--1418.

F. G. Awad, P. Sibanda and S. S. Motsa, On the linear stability analysis of a Maxwell fluid with double-diffusive convection, Appl. Math. Modelling, 34(2010), 3509--3517.

S. Wang and W. Tan, Stability analysis of Soret-driven double-diffusive convection of Maxwell fluid in a porous medium, Int. J. Heat Fluid Flow, 37 (2011), 88--94.

J. G. Oldroyd, Non--Newtonian effects in steady motion of some idealized elastico--viscous liquid, Proc. Roy. Soc. (London), A245(1958), 278--297.

E. A., Spiegel, Convective instability in a compressible atmosphere, Astrophys. J., 141(1965), 1068pp.