Global behavior of a third order difference equation

Main Article Content

Raafat Abo-zeid

Abstract

The aim of this paper is to investigate the global stability and periodic nature of the positive solutions of the difference equation\[x_{n+1}=\frac{A+Bx_{n-1}}{C+Dx_{n}x_{n-2}},\qquad n=0,1,2,\ldots\] where $A,B$ are nonnegative real numbers and$C, D>0$.

Article Details

How to Cite
Abo-zeid, R. (2012). Global behavior of a third order difference equation. Tamkang Journal of Mathematics, 43(3), 375–384. https://doi.org/10.5556/j.tkjm.43.2012.801
Section
Papers

References

R. P. Agarwal, Difference Equations and Inequalities, First Edition, Marcel Dekker, 1992.

M. A. Al-Shabi, R. Abo-Zeid, Global asymptotic stability of a higher order difference equation}, Appl. Math. Sci., 4(17)(2010), 839--847.

C. Cinar, on the positive solution of the difference equation $x_{n+1}=frac{ax_{n-1}}{1+bx_{n}x_{n-1}}$, Appl. Math. Comput., 150(2004), 21--24.

E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, 2005.

E. A. Grove, G. Ladas, M. Predescu and M. Radin, On the global character of the difference equation $x_{n+1}=frac{alpha+gamma x_{n-{2k+1}}+delta x_{n-{2l}}}{A+x_{n-{2l}}}$, J. Diff. Eq. App., 9(2)(2003), 171--199.

C. H. Gibbons, M. R. S. Kulenovic and G. Ladas, On the recursive sequence $x_{n+1}=frac{alpha+beta x_{n-1}}{gamma+x_n}$, Math. Sci. Res. Hot-Line, 4(2)(2000), 1--11.

V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with applications, Kluwer Academic, Dordrecht, 1993.

V. L. Kocic and G. Ladas, Global attractivity in a second order nonlinear difference equations, J. Math. Anal. Appl., 180(1993), 144--150.

M. R. S. Kulenovic, G. Ladas and N. P. Prokup, A rational difference equation, Comp. Math. Appl., 41(2001), 671--678.

M. R. S. Kulenovic and G. Ladas, Dynamics of Second-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2002.

E. Camouzis and G. Ladas, Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures, Chapman and Hall/HRC Boca Raton, 2008.

H. Sedaghat, Nonlinear Difference Equations, Theory and Applications to Social Science Models, Kluwer Academic Publishers, Dordrecht, 2003.

X. Yang, W. Su, B. Chen, G.M. Megson, D.J. Evans, On the recursive sequence$x_{n+1}=frac{ax_{n}+bx_{n-1}}{c+dx_{n}x_{n-1}}$, Appl. Math. Comput., 162(2005), 1485--1497.