Some remarks on reconstruction from local weighted averages

Main Article Content

Devaraj Ponnaian

Abstract

We solve the convolution equation of the type $f\star\mu=g,$ where $f\star \mu$ is the convolution of $f$ and $\mu$ defined by $(f\star \mu)(x)=\int_{{\mathbb{R}}}f(x-y)d\mu(y),$ $g$ is a given function and $\mu$ is a finite linear combination of translates of an indicator function on an interval.

Article Details

How to Cite
Ponnaian, D. (2012). Some remarks on reconstruction from local weighted averages. Tamkang Journal of Mathematics, 44(3), 217–226. https://doi.org/10.5556/j.tkjm.44.2013.820
Section
Papers
Author Biography

Devaraj Ponnaian, Anna University

Department ofMathematics, College of EngineeringGuindy, Anna University Chennai, India, PIN 600 025.

References

S. C. Bagchi and A. Sitaram, Spherical mean-periodic functions on semi simple Lie groups, Pacific J. Math., 84(2) (1979), 241--250.

C. A. Berenstein and B. A. Taylor, Mean-periodic functions, Internat. J. Math. Math. Sci., 3(2) (1980), 199--235.

J. Delsarte, Les fonctions moyenne-periodiques, J. Math. Pures Appl., 14(1935), 403--453.

P. Devaraj, Reconstruction from local averages involving discrete measures, Rendiconti del Circolo Matematico di Palermo, 59(2010), 261--166 .

P. Devaraj and Inder K. Rana, Vector valued mean-periodic functions, Journal of

Australian Mathematical Society, 72(2002), 363--388.

G. A. Edgar and J. M. Rosenblatt, Difference equations over locally compact abelain groups, Transactions of the American Mathematical Society, 253(1979), 273--289.

L. Ehrenpreis, Appendix to the paper "Mean periodic

functions I", Amer. J. Math., 77(1955), 731--733.

L. Ehrenpreis, Mean periodic functions, Part I. Varieties

whose annihilator ideals are principal, Amer. J. Math., 77(1955), 293--328.

L. Ehrenpreis, Solutions of some problems of division

III, Amer. J. Math., 78(1956), 685--715.

F. John, Continuous dependence on data for solutions of partial differential equations with prescribed bound, Comm. Pure Appl. Math., 13(1960), 551--585.

L. H ormander, On the range of convolution operators, Annals of Mathematics 76 (1)(1968), 148--169.

J. P. Kahane, Lectures on mean-periodic functions, Tata Institute, 1957.

B. Malgrange, Existence et approximation des solutions des equations aux derivees partielles et des equations de convolutions, Ann. Inst. Fourier (Grenoble) 6(1955-56),271--355.

E. Novak and Inder K. Rana, On the unsmoothing of functions on the real line, Proc. Nede. Acad.Sci. Ser. A 89(1986), 201--207.

B. van der Pol, Smoothing and Unsmoothing, In: M. Kac, Probability and related topics in physical sciences. New York: Interscience 1959.

B. van der Pol and H. Bremmer, Operational Calculus, Cambridge University Press, 1964.

Inder K. Rana, Unsmoothing over balls via plane wave decomposition, Rend. Cir. Mat. Palermo 2(34)(1990),217--234.

L. Schwartz, Theorie generale des fonctions moyenne-periodiquies, Ann. of Math., 48(1947), 857--929.

S. Thangavelu, Mean periodic functions on phase space and the Pompeiu problem with a twist, Ann. Inst. Fourier (Grenoble) 45 (4) (1995), 1007--1035.

Y. Weit, On Schwartz theorem for the motion group, Ann. Inst. Fourier (Grenoble), 30(1980), 91--107.

L. Szekelyhidi, Spectral synthesis problem on locally compact groups, Monatsh Math, Springer-Verlag, 2009.