An interior inverse problem for the impulsive Dirac operator

Main Article Content

Sinan Özkan
Rauf Kh. Amirov

Abstract

In this study, an inverse problem for Dirac differential operators with discontinuities is studied. It is shown that the potential function can be uniquely determined by a set of values of eigenfunctions at some internal point and one spectrum.

Article Details

How to Cite
Özkan, S., & Amirov, R. K. (2011). An interior inverse problem for the impulsive Dirac operator. Tamkang Journal of Mathematics, 42(3), 259–263. https://doi.org/10.5556/j.tkjm.42.2011.824
Section
Special Issue

References

A : R. Kh. Amirov, On system of Dirac differential equations with discontinuity conditions inside an interval, Ukrainian Math. J. Vol. 57, No.5, (2005) 712-727.

Gsy1 : M. G. Gasymov, Inverse problem of the scattering theory for Dirac system of order 2n, Tr. Mosk Mat. Obshch., 19,(1968), 41-112.

Gsy2 : M. G. Gasymov and T. T. Dzhabiev, Determination of a system of Dirac differential equations using two spectra, Proceeding of School-Seminar on the Spectral Theory of Operators and Representations of Group Theory [in Russian], Elm, Baku, (1975), pp. 46-71.

Gus : I. M. Guseinov, On the representation of Jost solutions of a system of Dirac differential equations with discontinuous coefficients, Izv. Akad. Nauk Azerb. SSR, No.5 (1999), 41-45.

Ha : O. H. Hald, Discontiuous inverse eigenvalue problems, Comm. Pure Appl. Math., 37, (1984), 539-577.

Levitan : B. M. Levitan, and I. S. Sargsyan, Sturm-Liouville and Dirac Operators [in Russian], Nauka, Moscow (1988).

O : O. N. Litvinenko, V. I. Soshnikov, The theory of Heteregeneous Lines and Their Applications in Radio Engineering, Radio, Moscow, (1964) (in Russian).

V : V. P. Meschanov, A. L. Feldstein, Automatic Design of Directional Couplers, Sviaz, Moscow, (1980).

Mo1 : K. Mochizuki, I. Trooshin, Inverse problem for interior spectral data of Sturm Liouville operator, J. Inverse Ill-posed Probl. 9 (2001) 425 433.

Mo2 : K. Mochizuki, I. Trooshin, Inverse problem for interior spectral data of the Dirac operator on a finite interval, Publ. RIMS, Kyoto Univ. 38 (2002) 387 395.

Yang : Chuan-Fu Yang , Xiao-Ping Yang, An interior inverse problem for the Sturm Liouville operator with discontinuous conditions, Applied Mathematics Letters 22 (2009) 1315 1319.

] R. Kh. Amirov, On system of Dirac differential equations with discontinuity conditions inside an interval, Ukrainian Math. J. Vol. 57, No.5, (2005) 712-727.