Extremum properties of the new ellipsoid
Main Article Content
Abstract
For a convex body $ K $ in $ {\mathbb R}^{n} $, Lutwak, Yang and Zhang defined a new ellipsoid $ \Gamma_{-2}K $, which is the dual analog of the Legendre ellipsoid. In this paper, we prove the following two results: (i) For any origin-symmetric convex body $ K $, there exist an ellipsoid $ E $ and a parallelotope $ P $ such that $ \Gamma_{-2}E \supseteq \Gamma_{-2}K \supseteq \Gamma_{-2}P $ and $ V(E)=V(K)=V(P) $; (ii) For any convex body $K$ whose John point is at the origin, then there exists a simplex $T$ such that $ \Gamma_{-2}K \supseteq \Gamma_{-2}T $ and $ V(K)=V(T) $.
Article Details
How to Cite
Jun, Y., Lin, S., & Gangsong, L. (2007). Extremum properties of the new ellipsoid. Tamkang Journal of Mathematics, 38(2), 159–165. https://doi.org/10.5556/j.tkjm.38.2007.86
Issue
Section
Papers