An interior inverse problem for Sturm-Liouville operators with eigenparameter dependent boundary conditions

Main Article Content

Wang Yu-Ping

Abstract

In this paper, we consider the inverse problem for Sturm-Liouville
operators with eigenparameter dependent boundary conditions and show that the
potential q(x) can be uniquely determined by a set of values of eigenfunctions at
some interior point and parts of two spectra.

Article Details

How to Cite
Yu-Ping, W. (2011). An interior inverse problem for Sturm-Liouville operators with eigenparameter dependent boundary conditions. Tamkang Journal of Mathematics, 42(3), 395–403. https://doi.org/10.5556/j.tkjm.42.2011.864
Section
Special Issue

References

V. A. Ambartsumyan, Über eine frage der eigenwerttheorie, Zeitschrift für Physik., 53 (1929), 690–695.

W. Feller, The parabolic differential equations and the associated semi-groups of transforms, Ann. of Math., 55(1952), 468–519.

R. E. Gaskell, A problemin heat conduction and an expansion theorem, Amer. J.Math., 64(1942), 447–455.

W. F. Bauer,Modified Sturm-Liouville systems, Quart. Appl.Math., 11(1953), 273–282.

R. L. Peek, Jr., Solutions to a problem in diffusion employing a non-orthogonal sine series, Ann of Math. 30 (1929), 265–269.

C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh 77a(1977), 293–308.

P. A. Binding, P. J. Browne and K. Seddighi, Sturm-Liouville problemswith eigenparameter dependent boundary conditions, Proc. Roy. Soc. Edinburgh., 37(1993), 57–72.

P. J. Browne and B. D. Sleeman, Inverse nodal problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, Inverse Problems, 12 (1996), 377–381.

N. J. Guliyev, The regularized trace formula for the Sturm-Liouville equation with spectral parameter in the boundary conditions, Proc. Inst.Math. Natl. Alad. Sci. Azerb., 22(2005), 99–102.

Y. P. Wang, C. F. Yang and Z. Y. Huang, Half inverse problem for the Sturm-Liouville operator with eigenparameter dependent boundary conditions, Submitted to Turkish Journal ofMathematics. 2010. 08.

H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problemwity mixed given data, SIAM Journal of Applied Mathematics, 34(1978), 676–680.

K.Mochizuki and I. Trooshin, Inverse problem for interior spectral data of Sturm-Liouville operator, J. Inverse Ill-Posed Problems 9 (2001), 425–433.

C. F. Yang and X. P. Yang, An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions, Applied Mathematics Letters, 22(2009), 1315–1319.

C.Willis, Inverse Sturm-Liouville problems with two discontinuities, Inverse Problems, 1 (1985), 263–289.

C. T. Shieh and V. A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, Journal of Mathematical Analysis and Applications, 347 (1) (2008), 266–272.

C. K. Law and J. Tsay, On the well-posedness of the inverse nodal problem, Inverse Problems, 17 (2001), 1493-1512.

C. L. Shen and C. T. Shieh, An inverse nodal problemfor vectorial Sturm-Liouville equation, Inverse Problems, 16 (2000), 349–56.

V. A. Yurko, Inverse spectral problems for Sturm-Liouville differential operators on a finite interval, J. Inv. Ill-Posed Problems, 17 (2009), 639–694.

B. J. Levin, Distribution of Zeros of Entire Functions, AMS. Transl. Vol. 5, Providence, 1964.

V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory. Inverse Ill-posed Problems Ser., VSP, Utrecht, 2002.

B.M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators. Kluwer Academic Publishers, 1990.

N. Dunford and J. T. Schwarz, Linear Operators (Part II). Interscience Publishers, 1963.