On approximate solutions of a certain hyperbolic partial differential equation
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic equation $ frac{{partial
^2 z}}{{partial xpartial y}} = fleft( {x,y,z,frac{{partial
z}}{{partial x}},frac{{partial z}}{{partial y}}} right), $ Studia Math., 15(1956), 201--215.
L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation $ u_{xt} = Fleft( {x,t,u,u_x }
right), $ J. Appl. Math. Stochastic Analysis, 3 (1990), 163--168.
J. Kisynski and A. Pelczar, Comparison of solutions and successive approximations in the theory of equation $ frac{{partial ^2
z}}{{partial xpartial y}} = fleft( {x,y,z,frac{{partial
z}}{{partial x}},frac{{partial z}}{{partial y}}} right), $ Dissertations Mathematicae, 76(1970), 1--77.
B. G. Pachpatte, Inequalities for Finite Difference Equations, Marcel Dekker Inc., New York, 2002.
B. G. Pachpatte, Integral and Finite Difference Inequalities and Applications, textit{North-Holland Mathematics Studies}, Vol. 205, Elsevier Science B.V., Amsterdam, 2006
B. G. Pachpatte, On a certain finite difference equation in two independent variables, textit{Bul. Inst. Polit. Iac{s}i Univ. Tech. "Gh.Asachi", Ser. Mat. Meca. Teor. Fiz.}, LIII(LVII)(2007), 35--44.
B. G. Pachpatte, On neutral type hyperbolic integrodifferential equation, textit{Fasc. Math. Nr.}, textbf{40}(2008), 57--69.
B.G. Pachpatte, On a certain hyperbolic partial differential equation, textit{Tamusi Oxford Jour. Math. Sci.}, textbf{25}(2009), 39--54.
B. G. Pachpatte, Error evaluation of approximate solutions for sum-difference equations in two variables, Elect. Jour. Diff. Eqs., 2009(2009), 1--8.
W. Walter, Differential and Integral inequalities, Springer-Verlag, Berlin, New York, 1970.