Inverse spectral nonlocal problem for the first order ordinary differential equation
Main Article Content
Abstract
We solve direct and inverse spectral problems for the first order ordinary differential
equation with nonlocal potential and nonlocal boundary condition
Article Details
References
V. A. Yurko, An inverse problem for integro-differential operators, Mat. zametki 50 (1991) 134–146 (in Russian) V. A. Yurko, Math. Notes 50 (1991), 1188–1197 (Engl. transl.)
M. M. Malamud, Similarity of Volterra operators and related questions of the theory of differential equations of fractional order, Trans. Moscow Math. Soc., 55 (1994), P.57–122.
K. V. Kravchenko, On differential operators with nonlocal boundary conditions, Diff. Uravn. 36 (2000), 464–469 K. V. Kravchenko, Diff. Eqns 36(2000), 517–523 (Engl. transl.)
S. A. Buterin, On an inverse spectral problem for a convolution integro-differential operator, Results Math 50 (2007), 173–181.
S. A. Buterin, On recovering a convolution perturbation of the SturmLiouville operator from the spectrum, Diff. Uravn. 46 (2010), 146–149 (in Russian) S. A. Buterin, Diff. Eqns 46 (2010), 150–154 (Engl. transl.)
Yu. V. Kuryshova, An inverse spectral problem for integro-differential operators, Mat. zametki 81(2007), 855–866 (Russian)Yu. V. Kuryshova, Math. Notes 81 (2007), 767–777 (Engl. transl.)
S. Albeverio and L. P. Nizhnik, Schr¨odinger operators with nonlocal point interactions, J. Math. Anal. Appl. 332 (2007), 884–895.
S. Albeverio, R. Hryniv and L. Nizhnik, Inverse spectral problems for nonlocal Sturm-Liouville operators, Inverse Problems 23 (2007), 523–535.
L. P. Nizhnik, Inverse eigenvalue problems for nonlocal Sturm-Liouville operators, Methods Funct. Anal. Topology, 15 (2009), 1, 41–47.
L. P. Nizhnik, Inverse nonlocal Sturm–Liouville problem, Inverse Problems, 26 (2010), 125006.
V. A. Marchenko, Sturm-Liouville Operators and Their Applications, Naukova Dumka Publ., Kiev, 1977 (in Russian); Engl. transl.: Birkh¨auser Verlag, Basel, 1986.