Stability estimate for a strongly coupled parabolic system

Main Article Content

Kun-Chu Chen

Abstract

We consider an inverse source problem for a 2×2 strongly coupled parabolic system. The Lipschitz stability is proved and the proof is based on the Carleman estimates with two large parameters.

Article Details

How to Cite
Chen, K.-C. (2012). Stability estimate for a strongly coupled parabolic system. Tamkang Journal of Mathematics, 43(1), 137–144. https://doi.org/10.5556/j.tkjm.43.2012.897
Section
Papers
Author Biography

Kun-Chu Chen, Department of AppliedMathematics, Nanjing Forestry University, Nanjing 210037, P.R. China. E-mail: fanjishan@njfu.com.cn Department of Information Management, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan.

Associate professor 
Department of Information Management,
National Kaohsiung University of Applied Sciences

 

References

M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25(2009), no. 12, 123013, (75pp).

A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of a class of multidimensional inverse problems, Soviet Math. Dokl., 24(1981), 244--247.

M. V. Klibanov, Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data, Inverse Problems, 22(2006), 495--514.

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14(1998), 1229--45.

M. Choulli, O. Y. Imanuvilov and M. Yamamoto, Inverse source problem for the Navier--Stokes equations, arXiv:UTMS 2006--3.

J. Fan, Y. Jiang, G. Nakamura, Inverse problems for the Boussinesq system, Inverse Problems, 25(2009), no. 8,085007, (10pp).

A. Benabdallah, M. Cristofol, P. Gaitan and M. Yamamoto, Inverse problem for a parabolic system with two components by measurements of one component, Appl. Anal., 88(2009), 683--709.

V. Isakov, Inverse Source Problems (Providence, RI: American Mathematical Society), 1990.

V. Isakov, Inverse Problems for Partial Differential Equations 2nd edn (Berlin: Springer), 2006.

D. Chae, O. Y. Imanuvilov and S. M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions, J. Dyn. Control Syst., 2(1996), 449--83.

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations (Lecture Notes vol 34) (Seoul, Korea: Seoul National University), 1996.

O. Yu. Imanuilov, Controllability of parabolic

equations, Sbornik Math., 186(1995), 879--900.