On half inverse problem for differential pencils with the spectral parameter in boundary conditions
Main Article Content
Abstract
Article Details
References
V.A. Yurko, On boundary value problems with the parameter in the boundary condi-tions, Izvestjya AN SSR. Ser. Matem. 19 (1984), no.5, 398--409.
J.D. Tamarkin, On Some Problems of the Theory of Ordinary Linear Differential Equations, Petrograd, 1917.
M.V. Keldysh, On eigenvalues and eigenfunctions of some classes of non-selfadjoint equations, Dokl. Akad. Nauk SSSR 77 (1951) 11--14.
A.G. Kostyuchenko, A.A. Shkalikov, Selfadjoint quadratic operator pencils and elliptic problems, Funktional. Anal. i Prilozhen. 17 (1983) no.2, 38--61; English transl.: Funct. Anal.
Appl. 17 (1983) 109--128.
A.S. Markus, Introduction to the spectral theory of polynomial operator pencils, Shti-nitsa, Kishinev, 1986; English transl., AMS, Providence, RI, 1988.
V.A. Yurko, An inverse problem for systems of differential equations with nonlinear dependence on the spectral parameter, Diff. Uravneniya 33 (1997) no.3, 390--395; English transl.,
Diff. Equations 33 (1997) no.3, 388--394.
V.A. Marchenko, Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977; English transl., Birkh"auser, 1986.
B.M. Levitan, Inverse Sturm-Liouville problems, Nauka, Moscow, 1984; English transl., VNU Sci.Press, Utrecht, 1987.
J.R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev. 28 (1986) 53--72.
K. Chadan, D. Colton, L. P"aiv"arinta, W. Rundell, An Introduction to Inverse Scattering and Inverse Spectral Problems. SIAM Monographs on Mathematical Modeling and Computation, SIAM,
Philadelphia, PA, 1997.
G. Freiling, V.A. Yurko, Inverse Sturm-Liouville Problems and Their Applications, NOVA Science Publishers, New York, 2001.
V.A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002.
M.G. Gasymov, G.Sh. Gusejnov, Determination of a diffusion operator from spectral data, Akad. Nauk Azerb. SSR Dokl. 37 (1981) no. 2, 19--23.
M. Yamamoto, Inverse eigenvalue problem for a vibration of a string with viscous drag, J. Math. Anal. Appl. 152 (1990) no.1, 20--34.
V.A. Yurko, An inverse problem for pencils of differential operators, Matem. Sbornik 191 (2000) no. 10, 137--160; English transl., Sbornik: Mathematics 191 (2000) no. 10,
--1586.
S.A. Buterin, V.A. Yurko, Inverse spectral problem for pencils of differential operators on a finite interval, Vestnik Bashkir. Univ. (2006) no.4, 8--12.
S.A. Buterin, C.-T. Shieh, Incomplete inverse spectral and nodal problems for differential pencils, Results in Mathematics, DOI: 10.1007/s00025-011-0137-6.
C.-T. Shieh, V.A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl. 374 (2008) 266--272.
H. Hochschtadt, B. Liebermann, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math. 34 (1978) 676--680.
F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum, Trans. Amer. Math. Soc. 352 (2000) no.6, 2765--2787.
L. Sakhnovich, Half-inverse problem on the finite interval Inverse Problems 17 (2001) 527--532.
R.O. Hryniv, Y.V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville opera-tors with singular potentials, Inverse Problems 20 (2004) 1423--1444.
O. Martinyuk, V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems 26 (2010) 035011 (6pp).