Inverse problem on the semi-axis: local approach
Main Article Content
Abstract
Article Details
References
P D Lax and R S Phillips. Scattering Theory. Academic Press, New York, 1967.
I M Gel'fand and B M Levitan. On the determination of a dierential equation from its spectral function. Izvestiya Akad. Nauk SSSR. Ser. Mat., 15:309-360, 1951. in Russian, Amer. Math Soc. Transl. (2) 1 253-304.
M G Krein. A transmission function of a second order one-dimensional boundary value problem. Dokl. Akad. Nauk. SSSR, 88(3):405-408, 1953.
M G Krein. On the one method of eective solving the inverse boundary value problem. Dokl. Akad. Nauk. SSSR, 94(6):987-990, 1954.
V A Marchenko. Certain problems in the theory of second-order dierential operators. Doklady Akad. Nauk SSSR, 72:457-460, 1950.
B Simon. A new approach to inverse spectral theory, I. Fundamental formalism. Annals of Mathematics, 150:1029-1057, 1999.
F Gesztesy and B Simon. A new approach to inverse spectral theory, II. General real potential and the connection to the spectral measure. Ann. of Math., 2(152):593-643, 2000.
A S Blagoveschenskii. On a local approach to the solution of the dynamical inverse problem for an inhomogeneous string. Trudy MIAN, 115:28-38, 1971. in Russian.
B Gopinath and M M Sondhi. Determination of the shape of the human vocal tract from acoustical measurements. Bell Syst. Tech. J., Jul:1195-1214, 1970.
R Carroll. Transmutation, Scattering Theory and Special Functions. North-Holland, Amsterdam, New York, Oxford, 1982.
S A Avdonin, M I Belishev, and S A Ivanov. Boundary control and inverse matrix problem for the equation $u_{tt} + u_{xx} + V (x)u = 0.$ Math. USSR Sbornik, 7:287-310, 1992.
S A Avdonin and V Mikhaylov. Boundary control approach to inverse spectral theory. Inverse Problems, 26:1-19, 2010.
S A Avdonin, V Mikhaylov, and A Rybkin. The boundary control approach to the Titchmarsh-Weyl m-function. Comm. Math. Phys., 275(3):791-803, 2007.
M I Belishev and A P Kachalov. The methods of boundary control theory in the inverse spectral problem for an inhomogeneous string. J. Soviet Math., 57(3):3072-3077, 1991.
S A Avdonin, M I Belishev, and Yu S Rozhkov. The BC method in the inverse problem for the heat equation. J. Inverse and Ill-Posed Problems, 5:309-322, 1997.
M I Belishev and T L Sheronova. Methods of boundary control theory in a nonstationary inverse
problem for an inhomogeneous string. J. Math. Sci., 73:320{-329, 1995.
S A Avdonin, M I Belishev, and Yu S Rozhkov. A dynamic inverse problem for the nonselfadjoint Sturm-Liouville operator. J. Math. Sci., 102(4):4139-4148, 2000.
M Ignatiev and V Yurko. Numerical Methods for Solving Inverse Sturm-Liouville Problems. Result. Math., 2008.
G Freiling and V A Yurko. Inverse Sturm-Liouville Problems and Their Applications. NOVA Science Publishers, New York, 2001.
V A Yurko. Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-posed Problems Series. VSP, Utrecht, 2002.
K Chadan, D Colton, L Paivarinta, and W Rundell. An Introduction to Inverse Scattering and Inverse Spectral Problems. SIAM Monographs on Mathematical Modeling and Computation. SIAM, Philadelphia, PA, 1997.
B D Lowe, M Pilant, and W Rundell. The recovery of potentials from nite spectral data. SIAM J. Math. Anal., 23(2):482-504, 1992.
H Fabiano, R Knobel, and B D Lowe. A finite-difference algorithm for an inverse Sturm-Liouville problem. IMA J. Numer. Anal., 15(1):75-88, 1995.
J W Paine, F de Hoog, and R. S. Anderssen. On the correction of finite-difference eigenvalue approximations for Sturm-Liouville problems. Computing, 26:123-139, 1981.
D C Barnes. The inverse eigenvalue problem with finite data. SIAM J. Math. Anal., 22(3):732-753, 1991.
S A Avdonin, B P Belinskiy, and J V Matthews. Dynamical inverse problem on a metric tree. Submitted.
S Avdonin, S Lenhart, and V Protopopescu. Determining the potential in the schrodinger equation from the dirichlet to neumann map by the boundary control method. J. Inverse and Ill-Posed Problems, 13:317-330, 2005.
S A Avdonin, S Lenhart, and V Protopopescu. Solving the dynamical inverse problem for the Schrodinger equation by the boundary control method. Inverse Problems, 18:349-361, 2002.
M I Belishev. Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Problems, 13(5):R1-R45, 1997.
M I Belishev. Recent progress in the boundary control method. Inverse Problems, 23(5):R1-R67, 2007.
A Katchalov, Ya Kurylev, and M Lassas. Inverse Boundary Spectral Problems. Chapman Hall/CRC, Boca Raton, FL, 2001.
S Avdonin and L Pandol. Boundary control method and coeffcient identication in the presence of boundary dissipation. Applied Math. Letters, 22(11):1705-1709, 2009.
B Simon. A new approach to inverse spectral theory, I. Fundamental formalism. Annals of Mathematics, 150:1029-1057, 1999.
C Remling. Inverse spectral theory for one-dimensional Schrodinger operators: the A function. Math. Z., 245:597-617, 2003.
C Remling. Schroedinger operators and de Branges spaces. J. Funct. Anal., 196(2):323-394, 2002.
A Quarteroni, R Sacco, and F Saleri. Numerical Mathematics. Springer-Verlag, New York, 2000.