On asymptotically generalized statistical equivalent sequences via ideals

Main Article Content

Vijay Kumar Kaushik
Archana Sharma

Abstract

For an admissible ideal IP(N) and a non-decreasing realsequence λ=(λn) tending to with λn+1λn+1,λ1=1, the objective of this paper is to introduce the new notions Istatistically equivalent, I[V,λ]equivalent and Iλstatistically equivalent. which are natural combinations of the definitions for asymptotically equivalent, statistical limit, λstatistical limit and Ilimit for number sequences. In addition, some relations among these new notions are also obtained.

Article Details

How to Cite
Kaushik, V. K., & Sharma, A. (2012). On asymptotically generalized statistical equivalent sequences via ideals. Tamkang Journal of Mathematics, 43(3), 469–478. https://doi.org/10.5556/j.tkjm.43.2012.919
Section
Papers
Author Biography

Vijay Kumar Kaushik, Department ofMathematics, Haryana College of Technology andManagement, Kaithal-136027, Haryana, India.

Department ofMathematics, Haryana College of Technology andManagement, Kaithal-136027, Haryana, India.

References

J. S. Conner, The statistical and strong pCesacutearo convergence of sequences, Analysis, 8 (1988), 47--63.

H. Fast, Surla convergence statistique, Colloq. Math., 2(1951), 241--244.

A. R. Freedman, J. J. Sember, M. Raphael, Some Cesaro type summability spaces, Proc. London Math. Soc., 37(1978), 508--520.

J. A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.

P. Kostyrko, T. Salat and W. Wilczynski, mathcalIconvergence, Real Anal. Exchange, 26 (2) (2000/2001), 669--686.

L. Leindler, Uber die de la Vallee-Pousinsche Summierbarkeit allgemeiner Orthogonal-reihen, Acta Math. Acad. Sci. Hungar., 16 (1965), 375--387.

J. Li, Asymptotic equivalence of sequences and summability, Internat. J. Math. and Math. Sci., 20 (4) (1997), 749--758.

I. J. Maddox, Statistical convergence in locally convex space, Math. Proc. Cambridge Philos. Soc., 104(1988), 141--145.

M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci., 16(4) (1993), 755--762.

M. Mursaleen, lambdastatistical convergence, Math. Slovaca, 50(1) (2000), 111--115.

R. F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math., 36(1) (2003), 149--153.

R. F. Patterson, E. Savas, On asymptotically lacunary statistically equivalent sequences, Thai J. Math., 4(2)(2006), 267--272.

I. P. Pobyvanets, Asymptotic equivalence of some linear transformation defined by a non-negative matrix and reduced to generalized equivalence in the sense of Cesaro and Abel, Mat. Fiz., 28 (1980), 83--87, 123.

D. Rath and B. C. Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian Jour. Pure Appl. Math., 27(2) (1996), 197--206.

T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca., 30 (1980), 139--150.

E. Savas, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24 (2011), 826--830.

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly., 66(1959), 361--375.

B. C. Tripathy, Matrix transformations between some class of sequences, J. Math. Anal. Appl., 206 (1997), 448--450.

B. C. Tripathy and M. Sen, On generalized statistically convergent sequences, Indian Jour. Pure Appl. Math., 32(11) (2001), 1689--1694.

B. C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian Jour. Pure Appl. Math., 35(5) (2004), 655--663.

B. C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang J. Math., 37(2) (2006), 155--162.

B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sin., 24 (5) (2008), 737--742.

B. C. Tripathy and A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50(2010), 565--574.

B. C. Tripathy and B. Hazarika, mathcalIconvergent sequence spaces associated with multiplier sequence spaces, Math. Inequal. Appl., 11(3) (2008), 543--548.

B. C. Tripathy and B. Hazarika, Paranormed mathcalIconvergent sequences spaces, Math. Slovaca., 59(4) (2009), 485--494.

B. C. Tripathy and S. Mahanta, On mathcalIacceleration convergence of sequences, J. Franklin Inst., 347 (2010), 591--598.

B. C. Tripathy and B. Hazarika, mathcalIconvergent sequences spaces defined by Orlicz function, Acta Math. Appl. Sin., 27(1) (2011) 149--154.

B. C. Tripathy and B. Hazarika, mathcalImonotonic and mathcalIconvergent sequences, Kyungpook Math. J., 51(2) (2011), 233--239.