On asymptotically generalized statistical equivalent sequences via ideals

Main Article Content

Vijay Kumar Kaushik
Archana Sharma

Abstract

For an admissible ideal ${\mathcal I}\subseteq {\mathcal P}({\mathbb N})$ and a non-decreasing realsequence $\lambda =(\lambda_n)$ tending to $\infty$ with $\lambda_{n+1} \leq \lambda_n+1, \lambda_1 = 1$, the objective of this paper is to introduce the new notions ${\mathcal I}-$statistically equivalent, ${\mathcal I}-[V, \lambda]-$equivalent and ${\mathcal I}-\lambda -$statistically equivalent. which are natural combinations of the definitions for asymptotically equivalent, statistical limit, $\lambda-$statistical limit and ${\mathcal I}-$limit for number sequences. In addition, some relations among these new notions are also obtained.

Article Details

How to Cite
Kaushik, V. K., & Sharma, A. (2012). On asymptotically generalized statistical equivalent sequences via ideals. Tamkang Journal of Mathematics, 43(3), 469–478. https://doi.org/10.5556/j.tkjm.43.2012.919
Section
Papers
Author Biography

Vijay Kumar Kaushik, Department ofMathematics, Haryana College of Technology andManagement, Kaithal-136027, Haryana, India.

Department ofMathematics, Haryana College of Technology andManagement, Kaithal-136027, Haryana, India.

References

J. S. Conner, The statistical and strong $p-Cesacute{a}$ro convergence of sequences, Analysis, 8 (1988), 47--63.

H. Fast, Surla convergence statistique, Colloq. Math., 2(1951), 241--244.

A. R. Freedman, J. J. Sember, M. Raphael, Some Cesaro type summability spaces, Proc. London Math. Soc., 37(1978), 508--520.

J. A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.

P. Kostyrko, T. Salat and W. Wilczynski, ${mathcal I}-$convergence, Real Anal. Exchange, 26 (2) (2000/2001), 669--686.

L. Leindler, Uber die de la Vallee-Pousinsche Summierbarkeit allgemeiner Orthogonal-reihen, Acta Math. Acad. Sci. Hungar., 16 (1965), 375--387.

J. Li, Asymptotic equivalence of sequences and summability, Internat. J. Math. and Math. Sci., 20 (4) (1997), 749--758.

I. J. Maddox, Statistical convergence in locally convex space, Math. Proc. Cambridge Philos. Soc., 104(1988), 141--145.

M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci., 16(4) (1993), 755--762.

M. Mursaleen, $lambda-$statistical convergence, Math. Slovaca, 50(1) (2000), 111--115.

R. F. Patterson, On asymptotically statistically equivalent sequences, Demonstratio Math., 36(1) (2003), 149--153.

R. F. Patterson, E. Savas, On asymptotically lacunary statistically equivalent sequences, Thai J. Math., 4(2)(2006), 267--272.

I. P. Pobyvanets, Asymptotic equivalence of some linear transformation defined by a non-negative matrix and reduced to generalized equivalence in the sense of Cesaro and Abel, Mat. Fiz., 28 (1980), 83--87, 123.

D. Rath and B. C. Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian Jour. Pure Appl. Math., 27(2) (1996), 197--206.

T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca., 30 (1980), 139--150.

E. Savas, P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24 (2011), 826--830.

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly., 66(1959), 361--375.

B. C. Tripathy, Matrix transformations between some class of sequences, J. Math. Anal. Appl., 206 (1997), 448--450.

B. C. Tripathy and M. Sen, On generalized statistically convergent sequences, Indian Jour. Pure Appl. Math., 32(11) (2001), 1689--1694.

B. C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian Jour. Pure Appl. Math., 35(5) (2004), 655--663.

B. C. Tripathy and M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang J. Math., 37(2) (2006), 155--162.

B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sin., 24 (5) (2008), 737--742.

B. C. Tripathy and A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50(2010), 565--574.

B. C. Tripathy and B. Hazarika, ${mathcal I}-$convergent sequence spaces associated with multiplier sequence spaces, Math. Inequal. Appl., 11(3) (2008), 543--548.

B. C. Tripathy and B. Hazarika, Paranormed ${mathcal I}-$convergent sequences spaces, Math. Slovaca., 59(4) (2009), 485--494.

B. C. Tripathy and S. Mahanta, On ${mathcal I}-$acceleration convergence of sequences, J. Franklin Inst., 347 (2010), 591--598.

B. C. Tripathy and B. Hazarika, ${mathcal I}-$convergent sequences spaces defined by Orlicz function, Acta Math. Appl. Sin., 27(1) (2011) 149--154.

B. C. Tripathy and B. Hazarika, ${mathcal I}-$monotonic and ${mathcal I}-$convergent sequences, Kyungpook Math. J., 51(2) (2011), 233--239.