New properties of the Jung-Kim-Srivastava integral operators

Main Article Content

B. A. Frasin

Abstract

The object of the present paper is to prove new subordinations results of analytic functions defined by two integral operators $P^{^\alpha }$ and $% Q_{_\beta }^{^\alpha }$. Several corollaries and consequences of the main results are also considered.

Article Details

How to Cite
Frasin, B. A. (2011). New properties of the Jung-Kim-Srivastava integral operators. Tamkang Journal of Mathematics, 42(2), 205–215. https://doi.org/10.5556/j.tkjm.42.2011.926
Section
Papers

References

M. Abramowitz and I. A. Stegun, Hand Book of Mathematical functions, Dover Publications, Inc., New York,

S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer.Math. Soc., 135 (1969), 429-446.

S. D. Bernardi, The univalence of certain analytic functions, Proc. Amer.Math. Soc., 24(1970), 312-318.

I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J.Math. Anal. Appl., 179 (1993), 138-147.

S. S. Miller and P. T. Monacu, Differential subordination and univalent functions, Michigan Math. J., 28 (1981), 157-171.

S. Owa and H. M. Srivastava,Some applications of the generalized Libera operator, Proc. Japan Acad., 62 (1986), 125-128.

H. M. Srivastava and S. Owa, New characterization of certain starlike and convex generalized hypergeometric functions, J. Nat. Acad.Math. India, 3(1985), 198-202.

H. M. Srivastava and S. Owa, A certain one-parameter additive family of operators defined on analytic functions, J. Anal. Appl., 118(1986), 80-87.