Coefficient estimate for a subclass of close-to-convex functionswith respect to symmetric points
Main Article Content
Abstract
For reals $A,B,C,D$ such that $-1\le D \le B< A\le C\le 1$, a subclass $K_s(A,B;C,D)$ of analytic functions $f(z)=z+\sum_{k=2}^\infty a_kz^k $ in the open unit disc $E=\{z:|z|<1\} $ is introduced. The object of the present paper is todetermine the coefficient estimate for functions $f(z)$ belonging tothe class $K_s(A,B;C,D)$.
Article Details
How to Cite
Mehrok, B. S., Singh, G., & Gupta, D. (2011). Coefficient estimate for a subclass of close-to-convex functionswith respect to symmetric points. Tamkang Journal of Mathematics, 42(2), 217–222. https://doi.org/10.5556/j.tkjm.42.2011.927
Issue
Section
Papers
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
R. N. Das and P. Singh, On subclasses of schlichtmapping, Ind. J. Pure Appl.Math., 8(1977), 864–872.
R.M.Goel and Beant Singh Mehrok,A subclass of starlike functionswith respect to symmetric points, Tamkang J.math., 13(1982), 11–24.
Aini Janteng and Suzeini Halim, Coefficient estimate for a subclass of close-to-convex functions with respect to symmetric points, Int. Journal of Math. Analysis, 3(2009), 309–313.
K. Sakaguchi, On a certain univalentmapping, J.Math. Soc. Japan, 11(1959), 72–80.