Modified three step iterative process with errors for common fixed point of generalized asymptotically quasi-nonexpansive mappings
Main Article Content
Abstract
Article Details
References
M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl., 207 (1997), 96--103.
R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171--174.
H. Lan, Common fixed point iterative processes with errors for generalized asymptotically quasi-nonexpansive mappings, Computers and Math. with Applications 52 (2006),1403--1412.
Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 259 (2001), 1--7.
Q. H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with Error Member, J. Math. Anal. Appl., 259 (2001), 18--24.
W. R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506--510.
I. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147--150.
K. Nammanee and S. Suantai, The modified Noor iterations with errors for non-Lipschitzian mappings in Banach spaces, Appl. Math. Comput., 187 (2007), 669-679.
J. Nantadilok, Three-step iteration schemes with errors for generalized asymptotically quasi-nonexpansive mappings, Thai J. Math.,6 (2008), no. 2, 295--306.
W. Nilsrakoo and S. Saejung, A new three-step fixed point iteration scheme for asymptotically nonexpansive mappings, Applied Mathematics and Computation, 181 (2006),1026--1034.
M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217--229.
W. V. Petryshyn and T. E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl., 43 (1973), 459--497.
G. S. Saluja and H. K. Nashine, Convergence theorems of fixed point for generalized asymptotically quasi-nonexpansive mappings in Banach spaces, Bulletin of Math. Anal. and Appl.,2, Issue 1, (2010), 1--11.
S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2) (2005), 506--517.
K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl., 178 (1993), 301--308.
B. L. Xu and M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267 (2002), 444--453.
L. Yang, X. Xie, S. Peng and G. Hu, Demiclosed principle and convergence for modified three step iterative process with errors of non-Lipschitzian mappings, J. Computational and Applied Maths., 234, Issue 4, (2010), 972--984.