On h-purifiable submodule of QTAG-module

Main Article Content

Khan Zubair Mohammad
Varshney Gargi

Abstract

Different concepts and decomposition theorems have been done for QTAG-modules by a number of authors. The concept of quasi $h$-pure submodules were introduced and different characterizations were obtained in \cite{5}. %[5]. The purpose of this paper is to obtain the relation between purifiability of a submodule and quasi $h$-pure submodules. Further we obtained results which shows that purifiability of a submodule is very much dependent on the purifiability of a $h$-pure and $h$-dense submodule of the given submodule.

Article Details

How to Cite
Mohammad, K. Z., & Gargi, V. (2014). On h-purifiable submodule of QTAG-module. Tamkang Journal of Mathematics, 45(3), 251–258. https://doi.org/10.5556/j.tkjm.45.2014.945
Section
Papers
Author Biographies

Khan Zubair Mohammad, Professor

Deparment ofMathematics, AligarhMuslim University, Aligarh, India.

Varshney Gargi, Research Scholar

Department of Applied Sciences and Humanities, ABES Engineering College, Ghaziabad, India.

References

L. Fuchs: Infinite Abelian Groups, Vol-I, Academic Press, New York, 1973.

M. Z. Khan, On h-purity in QTAG-modules}, Communications in Algebra, 16(1988), 2649--2660.

M. Z. Khan, On h-purity in QTAG-modules II, Communications in Algebra, 17(1989), 1387--1394.

M. Z. Khan and R. Bano, Some decomposition theorems in abelian groups like modules,Soochow J. Math., 18 (1992), 1--7.

M. Z. Khan and A. Zubair, On Quasi $h$-pure submodules of QTAG-modules, Internat. J. Math. and Math. Sci., 24 (2000), 493--499.

M. Z. Khan and G. Varshney, Some decomposition theorems on QTAG-modules, Scientia Series A: Mathematical Sciences, 23 (2012), 75-81.

M. Ahmad, A. H. Ansari and M. Z. Khan, Some decomposition theorems on $S_2$ modules, Tamkang J. Math., 11 (1980), 203--208.

M. Ahmad, A. H. Ansari and M. Z. Khan, Some decomposition theorems on $S_2$ modules III, Tamkang J. Math., 12 (1981), 147--154.

S. Singh, Abelian groups like modules, Act. Math. Hung., 50(1987), 85--95.