The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator

Main Article Content

S. N. Kund
A. K. Mishra

Abstract

In this paper a new class of analytic functions, associated with the Carlson-Shaffer operator, is investigated. The sharp estimate for the Second Hankel determinant and class preserving transforms are studied.

Article Details

How to Cite
Kund, S. N., & Mishra, A. K. (2013). The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator. Tamkang Journal of Mathematics, 44(1), 73–82. https://doi.org/10.5556/j.tkjm.44.2013.963
Section
Papers
Author Biographies

S. N. Kund

Khallikote Junior College, Department ofMathematics, Berhampur, District Ganjam, Odisha, 760001, India.

A. K. Mishra

Berhampur University, Department ofMathematics, Berhampur, District Ganjam, Odisha, 760007, India.

References

O. Al-Refai and M. Darus, Second Hankel determinant for a class of analytic functions defined by a fractional operator, European J. of Scientific Research 28(2009), 234--241.

S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429--446.

B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737--745.

P. L. Duren, Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 1983.

M. Fekete and G. Szego, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc., 8(1933), 85--89.

T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4(2010), %No.52, 2573--2585.

T. Hayami and S. Owa, Coefficient estimates for analytic functions concerned with Hankel determinant, Fract. Calc.Appl. Anal., 13 (4)(2010), 367--384.

A. Janteng, S. A., Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math.,7, 2006, Art.50.

http://jipm.vu.edu.an/

A. Janteng, S. A. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal.2007, 619--625.

A. Janteng, S. A. Halim and M. Darus, Estimate on the Second Hankel functional for functions whose derivative has a positive real part, J. Quality Measurement and Analysis 4(2008), 189--195.

F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8--12.

W. Koepf, On the Fekete-- Szegoproblem for close--to—convex functions—II, Arch. Math.(Basel),49(1987), 420--433.

W. Koepf, On the Fekete-- Szegoproblem for close--to—convex functions, Proc. Amer. Math. Soc., 101(1987), % No.1, 89--95.

R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85 (1982), 225--230.

R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251--257.

Y. Ling and S. Ding, A class of analytic functions defined by fractional derivative, J. Math. Anal. Appl.,186(1994), 504--513.

T. H. MacGregor, Functions whose derivative have positive real part, Trans. Amer. Math. Soc., 104(1962),532--537.

A. K. Mishra and P. Gochhayat, Applications of the Owa--Srivastava operator to the class of k-uniformly convex functions, Frac. Calc. Appl. Anal., 9(2006), 323--331.

A. K. Mishra and P. Gochhayat, The Fekete—Szego problem for k--uniformly convex functions and for a class defined by Owa--Srivastava operator, J. Math. Anal. Appl., 347(2008), 563--572.

A. K. Mishra and P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. and Math. Sc., 2008, Article ID 153280, doi:10.1155/2008/153280.

G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1(2009), 85--89.

J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p—valent function, Trans. Amer. Math. Soc., 223(1976), 337--346

S. Owa, On the distortion theorems I, Kyungpook Math.J., 18(1978), 53--59.

S. Owa and H. M. Srivastava, Applications of fractional derivative, Math. Japon., 29(1984), 383--389.

S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057--1077.

St. Ruscheweyh, T. Sheil--Small, Hadamard product of schlicht functions and the Polya—Schoenberg conjecture, Comment. Math. Helv., 48(1973), 119--135.