Coupled coincidence point result in partially ordered generalized metric spaces

Main Article Content

Vizender Sihag
Ramesh Kumar Vats

Abstract

The present study introduces the notion of compatibility in partially ordered G-metric spaces and uses this perception to establish a coupled coincidence point result. Our effort extend the recent work of Choudhary and Maity [B. S. Choudhary, P. Maity, Coupled fixed point results in generalized metric spaces, Mathematical and Computer Modelling 54 (2011) 73-79]. The example demonstrates that our main result is an actual improvement over the results which are generalized

Article Details

How to Cite
Sihag, V., & Vats, R. K. (2012). Coupled coincidence point result in partially ordered generalized metric spaces. Tamkang Journal of Mathematics, 43(4), 609–619. https://doi.org/10.5556/j.tkjm.43.2012.992
Section
Papers
Author Biographies

Vizender Sihag, Department Of Mathematics National Institute of Technology Hamirpur INDIA

Department ofMathematics, National Institute of Technology, Hamirpur (H.P.)-177005, India.

Ramesh Kumar Vats

Department ofMathematics, National Institute of Technology, Hamirpur (H.P.)-177005, India.

References

Z. Mustafa and B. Sims, Some remark concerning D-metric spaces, Proc. Int. Conf. on Fixed Point Theor. Appl., Valencia, Spain, July 2003, 189--198.

Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal.,7(2) (2006), 289--297.

Z. Mustafa, H. Obiedat and F. Awawdeh, Some of fixed point theorem for mapping on complete G-metric spaces, Fixed Point Theory Appl., 12(2008), Article ID 189870.

Z. Mustafa, W. Shatanawi and M. Bataineh, Fixed point theorems on complete G-metric spaces, J. Math. Stat. 4(4) (2008), 196--201.

Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point result in G-metric space, Int. J. Math. Math. Sci., 10(2009), Article ID 283028.

Z. Mustafa and B. Sims, Fixed point theorem for contractive mapping in G-metric space, Fixed Point Theory Appl. 10(2009), Article ID 917175.

M. Abbas and B. E. Rhoades, Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Appl. Math. Comput., 215 (2009), 262--269.

R. Saadati, S. M. Vaezpour, P. Vetro and B. E. Rhoades, Fixed point theorem in generalized partially ordered G-metric spaces, Math. Comput. Modelling, 52(2010),

--801.

R. K. Vats. S. Kumar and V. Sihag, Some common fixed point theorem for compatible mapping of type (A) in complete G-metric spaces, Adv. Fuzzy Math., 6(1) (2011), 27--38.

R. Chugh, T. Kadian, A. Rani and B. E. Rhoades, Property P in G-metric space, Fixed Point Theory Appl., 12 (2010), Article ID 401684.

M. Abbas, T. Nazir and S. Radenovic, Some periodic point result in generalized metric spaces, Appl. Math. Comput., 217 (2010) (8) (2010, 4094--4099.

T. Kamran, N. Cakic, Hybrid tangential property and coincidence point theorems}, Fixed Point Theory, 9 (2008), 487--497.

Lj. Ciric, N. Cakic, On common fixed point theorems for non-self hybrid mappings in convex metric spaces, Appl. Math. Comput., 208 (1) (2009), 90--97.

A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to metric equations, Proc. Amer. Math. Soc., 132(2004),1435--1443.

J. J. Nieto and R. Rodrigues-Lopez, Contractive mapping theorems in partially ordered sets and application to ordinary differential equations, Order 22 (2005), 223--239.

T. Gnana. Bhaskar and V. Lakshmikanthan, Fixed point theorem in partially ordered metric spaces and applications, Nonlinear Anal. TMA, 65 (2006), 1379--1393.

J. J. Nieto and R. R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and application to ordinary differential equation, Acta Math. Sin., 23 (12)(2007), 2205--2212.

L. Ciric, N. Cakic, M. Rajovic and J. S. Ume, Monotone generalized nonlinear contraction in partially ordered metric spaces, Fixed Point Theory Appl., 11 (2008), Article ID 131294.

J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71 (2009), 3403--3410.

L. Ciric. V. Lakshmikanthan, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stoch. Anal. Appl., 27 (6) (2009), 1246--1259.

V. Lakshmikanthan and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. TMA, 70 (12) (2009), 4341--4349.

J. Harjani and K. Sadarangani, Generalized contraction in partially ordered metric space and application to ordinary differential equation, Nonlinear Anal., 72 (2010), 1188--1197.

B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces}, Nonlinear Anal. 72 (12) (2010), 4508--4517.

E. Karapinar, Coupled fixed point theorem for nonlinear contractions in cone metric spaces, Comput. Math. Appl., 59 (2010), 3656-3668.

M. Abbas, M. Ali Khan and S. Radenovic, Common coupled fixed point theorem in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195--202.

B. S. Choudhary and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal., 73 (2010), 2524--2531.

B. S. Choudhary and P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling, 54 (2011), 73--79.