On a subclass of p-harmonic mappings
Main Article Content
Abstract
Article Details
References
Z. Abdulhadi and Y. Abu-Muhanna, Landau's theorem for biharmonic mappings, J. Math. Anal. Appl., 338(2008), 705-709.
Z. Abdulhadi, Y. Abu-Muhanna and S. Khoury, On univalent solutions of the biharmonic equations, J. Inequal. Appl., 5(2005), 469-478.
Z. Abdulhadi, Y. Abu-Muhanna and S. Khoury, On some properties of solutions of the biharmonic equation, Appl. Math. Comput., 177(2006), 346-351.
G. Aronsson, Representation of a p-harmonic function near critical point in the plane, Manuscripta Math., 66 (1989), 73-95.
G. Aronsson and P. Lindqvist, On p-harmonic functions in the plane and their stream functions, J. Differential Equations, 74, (1988), 157-178.
Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie Sklodowska Sect. A, 44(1990), 1-7.
Sh. Chen, S. Ponnusamy and X. Wang, Some properties and regions of variability of affine harmonic mappings and affine biharmonic mappings, Int. J. Math. Math. Sci., (2009), Art. ID 834215, 1-14.
Sh. Chen, S. Ponnusamy and X. Wang, Some peoperties of planar p-harmonic mappings, To appear in J. Math. Anal. Appl..
Sh. Chen, S. Ponnusamy and X. Wang, Bloch constant and Landau's theorem for planar $p$-harmonic mappings, J. Math. Anal. Appl., 373(2011), 102--110.
Sh. Chen, S. Ponnusamy and X.Wang, Landau theorem for certain biharmonic mappings, Appl. Math. Comput., 208 (2), (2009), 427-433.
J. Clunie and T. Sheil-Small, Harmonic univalent functions , Ann. Acad. Sci. Fenn. Ser. A. I., 9(1984), 3-25.
K. K. Dixit and S. Porwal, On a subclass of harmonic univalent functions, J. Inequal. Pure Appl. Math., 10(1)(2009), Art. 27, 1-18.
K. K. Dixit and S. Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamkang J. Math.,41(3) (2010), 261-269.
P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.
P. L. Duren, Univalent Functions. New York: Springer-Verlag, 1982.
J. M. Jahangiri, Harmonic meromorphic starlike functions, Bull. Korean Math. Soc., 37(2000), 291-301.
J. L. Lewis, On critical points of p-harmonic functions in the plane, J. Differential Equations, 3(1994).
J. Manfredi, p-harmonic functions in the plane, Proc. Amer. Math. Soc., 103(2)(1988), 473-479.
J. Manfredi, Isolated singularities of p-harmonic functions in the plane, SIAM J. Math. Anal., 22(2), (1991), 424-439.
T. H. MacGregor, Applications of extreme point theory to univalent functions, Michigan Math. J., 19(1972), 361-376.
J. G. Milcetich, On the extreme points of some sets of analytic functions, Proc. Amer. Math. Soc., 45(1974), 223-228.
M. Oztrk and S. Yalcin, On univalent harmonic functions, J. Inequal. Pure Appl. Math., 3 (4) (2002), Art.61, 1-8.
S. Porwal, V. Kumar and P. Dixit, A unified presentation of harmonic univalent funtions, Fareast J. Math. Sci., 47,(2010), 23-32.
J. Qiao and X. Wang, On p-Harmonic univalent mappings, Acta Math. Scientia.
S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 18(1981), 521-528.
H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283-289.
B. Wang and L. Ma, Gradient estimation of a p-harmonic map, J. Diff. Equations, 30(2010), 1-6.