On a subclass of p-harmonic mappings

Main Article Content

Saurabh Porwal
Kaushal Kishore Dixit

Abstract

The purpose of the present paper is to introduce two new classes $HS_p(\alpha)$ and $HC_p(\alpha)$ of $p$-harmonic mappings together with their corresponding subclasses $HS^0_p(\alpha)$ and $HC^0_p(\alpha)$. We prove that the mappings in $HS_p(\alpha)$ and $HC_p(\alpha)$ are univalent and sense-preserving in $U$ and obtain extreme points of $HS^0_p(\alpha)$ and $HC^0_p(\alpha)$, $HS_p(\alpha)\cap T_p$ and $HC_p(\alpha)\cap T_p$ are determined, where $T_p$ denotes the set of $p$-harmonic mapping with non negative coefficients. Finally, we establish the existence of the neighborhoods of mappings in $HC_p(\alpha)$. Relevant connections of the results presented here with various known results are briefly indicated.

Article Details

How to Cite
Porwal, S., & Dixit, K. K. (2013). On a subclass of p-harmonic mappings. Tamkang Journal of Mathematics, 44(3), 313–325. https://doi.org/10.5556/j.tkjm.44.2013.1053
Section
Papers
Author Biographies

Saurabh Porwal

Department ofMathematics, U.I.E.T. Campus, C.S.J.M. University, Kanpur-208024, (U.P.), India.

Kaushal Kishore Dixit

Department of Engineering Mathematics, Gwalior Institute of Information Technology, Gwalior-474015, (M.P.),India.

References

Z. Abdulhadi and Y. Abu-Muhanna, Landau's theorem for biharmonic mappings, J. Math. Anal. Appl., 338(2008), 705-709.

Z. Abdulhadi, Y. Abu-Muhanna and S. Khoury, On univalent solutions of the biharmonic equations, J. Inequal. Appl., 5(2005), 469-478.

Z. Abdulhadi, Y. Abu-Muhanna and S. Khoury, On some properties of solutions of the biharmonic equation, Appl. Math. Comput., 177(2006), 346-351.

G. Aronsson, Representation of a p-harmonic function near critical point in the plane, Manuscripta Math., 66 (1989), 73-95.

G. Aronsson and P. Lindqvist, On p-harmonic functions in the plane and their stream functions, J. Differential Equations, 74, (1988), 157-178.

Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie Sklodowska Sect. A, 44(1990), 1-7.

Sh. Chen, S. Ponnusamy and X. Wang, Some properties and regions of variability of affine harmonic mappings and affine biharmonic mappings, Int. J. Math. Math. Sci., (2009), Art. ID 834215, 1-14.

Sh. Chen, S. Ponnusamy and X. Wang, Some peoperties of planar p-harmonic mappings, To appear in J. Math. Anal. Appl..

Sh. Chen, S. Ponnusamy and X. Wang, Bloch constant and Landau's theorem for planar $p$-harmonic mappings, J. Math. Anal. Appl., 373(2011), 102--110.

Sh. Chen, S. Ponnusamy and X.Wang, Landau theorem for certain biharmonic mappings, Appl. Math. Comput., 208 (2), (2009), 427-433.

J. Clunie and T. Sheil-Small, Harmonic univalent functions , Ann. Acad. Sci. Fenn. Ser. A. I., 9(1984), 3-25.

K. K. Dixit and S. Porwal, On a subclass of harmonic univalent functions, J. Inequal. Pure Appl. Math., 10(1)(2009), Art. 27, 1-18.

K. K. Dixit and S. Porwal, A subclass of harmonic univalent functions with positive coefficients, Tamkang J. Math.,41(3) (2010), 261-269.

P. Duren, Harmonic mappings in the plane, Cambridge Univ. Press, 2004.

P. L. Duren, Univalent Functions. New York: Springer-Verlag, 1982.

J. M. Jahangiri, Harmonic meromorphic starlike functions, Bull. Korean Math. Soc., 37(2000), 291-301.

J. L. Lewis, On critical points of p-harmonic functions in the plane, J. Differential Equations, 3(1994).

J. Manfredi, p-harmonic functions in the plane, Proc. Amer. Math. Soc., 103(2)(1988), 473-479.

J. Manfredi, Isolated singularities of p-harmonic functions in the plane, SIAM J. Math. Anal., 22(2), (1991), 424-439.

T. H. MacGregor, Applications of extreme point theory to univalent functions, Michigan Math. J., 19(1972), 361-376.

J. G. Milcetich, On the extreme points of some sets of analytic functions, Proc. Amer. Math. Soc., 45(1974), 223-228.

M. Oztrk and S. Yalcin, On univalent harmonic functions, J. Inequal. Pure Appl. Math., 3 (4) (2002), Art.61, 1-8.

S. Porwal, V. Kumar and P. Dixit, A unified presentation of harmonic univalent funtions, Fareast J. Math. Sci., 47,(2010), 23-32.

J. Qiao and X. Wang, On p-Harmonic univalent mappings, Acta Math. Scientia.

S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 18(1981), 521-528.

H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283-289.

B. Wang and L. Ma, Gradient estimation of a p-harmonic map, J. Diff. Equations, 30(2010), 1-6.