Classes with negative coefficients and starlike with respect to other points II

Main Article Content

Suzeini Abdul Halim
Aini Janteng
Maslina Darus

Abstract

A class $ S_{s}^{\star}T(\alpha,\beta,\sigma,k) $ of functions $ f $ which are analytic and univalent in the open unit disk $ {D=\{z:|z|<1\}} $ given by $ f(z)=z-{\sum_{n=2}^{\infty}}{a_n}{z^n} $ and satisfying the condition

$ \abs{\frac{zf'(z)}{f(z)-f(-z)}-k}<\beta \abs{\frac{\alpha zf'(z)}{f(z)-f(-z)}-(2\sigma-k)} $

for $ 0\leq \alpha \leq 1,0< \beta\leq1,0 \leq \sigma \leq \frac{1}{2}$ is introduced and studied. An analogous class $ S_{c}^{\star}T(\alpha,\beta,\sigma,k) $ and $ S_{sc}^{\star}T(\alpha,\beta,\sigma,k) $ are also examined.

Article Details

How to Cite
Halim, S. A., Janteng, A., & Darus, M. (2006). Classes with negative coefficients and starlike with respect to other points II. Tamkang Journal of Mathematics, 37(4), 345–354. https://doi.org/10.5556/j.tkjm.37.2006.148
Section
Papers
Author Biographies

Suzeini Abdul Halim

Institute of Mathematical Sciences , Universiti Malaya, 50603 Kuala Lumpur, Malaysia.

Aini Janteng

Institute of Mathematical Sciences , Universiti Malaya, 50603 Kuala Lumpur, Malaysia.

Maslina Darus

School of Mathematical Sciences, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

Most read articles by the same author(s)

1 2 > >>