Second Hankel determinant for a class of analytic functions defined by a linear operator

Main Article Content

Aabed Mohammed
Maslina Darus

Abstract

By making use of the linear operator $\Theta _m^{\lambda ,n} ,\,\,m \in \mathbb{N}=\{1,2,3,\ldots\}$ and $\lambda \,,\,n \in \mathbb{N}_0 = \mathbb{N} \cup \{ 0\}$ given by the authors, a class of analytic functions $S_m^{\lambda ,n}(\alpha ,\sigma ) ( {| \alpha| < \pi/2}, \; 0\leq \sigma <1) $ is introduced. The object of the present paper is to obtain sharp upper bound for functional $ \left| {\,a_2 a_4 - a_3 ^2 } \right|.$

Article Details

How to Cite
Mohammed, A., & Darus, M. (2012). Second Hankel determinant for a class of analytic functions defined by a linear operator. Tamkang Journal of Mathematics, 43(3), 455–462. https://doi.org/10.5556/j.tkjm.43.2012.518
Section
Papers
Author Biographies

Aabed Mohammed, School ofMathematical Sceinces, Faculty of Science and Technology,Universiti KebangsaanMalaysia 43600 Bangi, Selangor D. Ehsan,Malaysia.

School ofMathematical Sceinces, Faculty of Science and Technology,Universiti KebangsaanMalaysia 43600 Bangi,Selangor D. Ehsan,Malaysia.

Maslina Darus, School ofMathematical Sceinces, Faculty of Science and Technology,Universiti KebangsaanMalaysia 43600 Bangi, Selangor D. Ehsan,Malaysia.

School ofMathematical Sceinces, Faculty of Science and Technology,Universiti KebangsaanMalaysia 43600 Bangi, Selangor D. Ehsan,Malaysia.

References

A. Mohammed and M. Darus, An operator defined by convolution involving the generalized Hurwitz--Lerch zeta function, Submitted.

A. Janteng, S. A. Halim, and M. Darus, Coefficient inequality for a function whose derivative has positive real part, J.Ineq. Pure and Appl. Math., 7(2)(2006), 1--5.

A. Janteng, S. A. Halim, and M. Darus, Hankel determinant for starlike and convex functions, Int. Journal of Math. Analysis, 1(13)(2007), 619 -- 625.

A. K. Mishra and P. Gochhayat, Second Hankel determinant for a class of ana lytic functions defined by fractional derivative functions, International Journal of Mathematics and Mathematical Sciences, 2008, Article ID 153280, 10 pages.

S. C. Soh and D. Mohamad, Coefficient bounds for certain classes of close--to--convex functions, Int. Journal of Math. Analysis, 2(27)(2008), 1343 -- 1351.

G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bulletin of Math. Anal. Appl., 1(3)(2009),85--89.

R. J. Libera and E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225--230.

R. J. Libera and E. J. Zlotkiewicz, Coeffcient bounds for the inverse of a function with derivative in $P$, Proc. Amer. Math. Soc., 87(2)(1983), 251--289.

P. L. Duren, Univalent Functions, Springer--Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

J. W. Noonan and D.K.Thomas, On the second Hankel determinant of areally mean $ p--$ valent functions, Trans. Amer. Math. Soc., 223(2)(1976), 337--346.

T. H. MacGregor, it Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), 532--537.

S. D. Lin, H. M.Srivastava, Some families of the Hurwitz--Lerch Zeta function and associated fractional derivative and other integral representations, Appl. Math. Comput., 154(2004), 725--733.

S. Goyal, R. K. Laddha, On the generalized Riemann zeta function and the generalized Lambert transform, Ganita Sandesh, 11(1997), 99--108.

M.S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374--408.

L. Spacek, Contribution la thorie des fonctions univalentes, Casopis Pest Math., 62(1932), 1219, (in Russian).

J. R. Libera, Univalent $alpha--$ spiral functions, Canada. J. Math., 19(1967), 449-456.

Q. Xu and S. Lu, The Alexander transformation of a subclass of spirallike functions of type $beta,$ J. Ineq. Pure and Appl. Math, 10(1)(2009), 1--7.

T. Hayami and S. Owa, Hankel determinant for p--valently starlike and convex functions of order $alpha$, General Math., 17 (2009), 29--44.

T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4(2010), 2573--2585.

Most read articles by the same author(s)

1 2 > >>