Isotropic geometry of graph surfaces associated with product production functions in economics

Main Article Content

Muhittin Evren Aydin
Mahmut Ergut

Abstract

A production function is a mathematical formalization in economics which denotes the relations between the output generated by a firm, an industry or an economy and the inputs that have been used in obtaining it. In this paper, we study the product production functions of 2 variables in terms of the geometry of their associated graph surfaces in the isotropic $3-$space $\mathbb{I}^{3}$. In particular, we derive several classification results for the graph surfaces of product production functions in $\mathbb{I}^{3}$ with constant curvature.

Article Details

How to Cite
Aydin, M. E., & Ergut, M. (2016). Isotropic geometry of graph surfaces associated with product production functions in economics. Tamkang Journal of Mathematics, 47(4), 433–443. https://doi.org/10.5556/j.tkjm.47.2016.2152
Section
Papers
Author Biographies

Muhittin Evren Aydin

Department ofMathematics, Firat University, 23119 Elazig, Turkey.

Mahmut Ergut

Department ofMathematics, Namik Kemal University, 59 000 Tekirdag.

References

H. Alodan, B.-Y. Chen, S. Deshmukh and G. E. Vilcu, On some geometric properties of quasi-product production models, arXiv:1512.05190v1 [math.DG], 2015.

M. E. Aydin and M. Ergut, Hessian determinants of composite functions with applications for production functions in economics, Kragujevac J. Math., 38(2)(2014), 259-268.

M. E. Aydin and A. Mihai, Classifications of quasi-sum production functions with Allen determinants, Filomat, 29(2015), 1351--1359.

M. E. Aydin and M. Ergut, Composite functions with Allen determinants and their applications to production models in economics, Tamkang J. Math., 45(2014), 427--435.

R. G. Chambers, Applied Production Analysis, Cambridge University Press, 1998.

B.-Y. Chen and G. E. Vilcu, Geometric classifications of homogeneous production functions, Appl. Math. Comput., 225(2013), 345--351.

B.-Y. Chen, S. Decu and L. Verstraelen, Notes on isotropic geometry of production models, Kragujevac J. Math., 38(2014), 23--33.

B.-Y. Chen, On some geometric properties of h-homogeneous production function in microeconomics, Kragujevac J. Math., 35(2011), 343--357.

B.-Y. Chen, On some geometric properties of quasi-sum production models, J. Math. Anal. Appl., 392(2012), 192--199.

B.-Y. Chen, Classification of h-homogeneous production functions with constant elasticity of substitution, Tamkang J. Math., 43(2012), 321--328.

B.-Y. Chen, Solutions to homogeneous Monge-Ampere equations of homothetic functions and their applications to production models in ecenomics, J. Math. Anal. Appl., 411(2014), 223--229.

C. W. Cobb and P. H. Douglas, A theory of production, Amer. Econom. Rev., 18(1928), 139--165.

S. Decu and L. Verstraelen, A note on the isotropical geometry of production surfaces, Kragujevac J. Math., 37(2013), 217--220.

Y. Fu, Geometric characterizations of quasi-product production models in economics, Filomat, (2016), to be published.

R. Lopez and M. Moruz, Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc., 52(2015), 523---535.

L. Losonczi, Production functions having the CES property, Acta Math. Acad. Paedagog. Nyhai. (N.S.) 26(2010), 113--125.

H. Meng and H. Liu, Factorable surfaces in Minkowski space, Bull. Korean Math. Soc., 46(2009), 155--169.

S. K. Mishra, A brief history of production functions, IUP J. Manage. Econom., 8(4)(2010), 6--34.

H. Pottmann, P. Grohs and N. J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math., 31(2009), 391--419.

H. Sachs, Isotrope Geometrie des Raumes, Vieweg, 1990.

Z. M. Sipus, Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hung., 68(2014),160--175.

A. Thompson, Economics of the Firm, Theory and Practice, 3rd edition, Prentice Hall, 1981.

I. Van de Woestyne, Minimal homothetical hypersurfaces of a semi-Euclidean space, Results Math., 27(1995), 333--342.

G. E. Vilcu, A geometric perspective on the generalized Cobb--Douglas production functions, Appl. Math. Lett., 24(2011), 777--783.

A. D. Vilcu and G. E. Vilcu, On some geometric properties of the generalized CES production functions, Appl. Math. Comput., 218(2011), 124--129.

A. D. Vilcu and G. E. Vilcu, On homogeneous production functions with proportional marginal rate of substitution, Math. Probl. Eng. 2013 (2013), Article ID 732643, 5 pages.

A. D. Vilcu and G. E. Vilcu, Some characterizations of the quasi-sum production models with proportional marginal rate of substitution, C. R. Math. Acad. Sci. Paris, 353(2015), 1129-1133.

X. Wang and Y. Fu, Some characterizations of the Cobb-Douglas and CES production functions in microeconomics, Abstr. Appl. Anal. 2013 (2013), Article ID 761832, 6 pages.

X. Wang, A geometric characterization of homogeneous production models in economics, Filomat, (2016), to be published.

Y. Yu and H. Liu, The factorable minimal surfaces, Proceedings of The Eleventh International Workshop on Diff. Geom., 11(2007), 33--39.