Dual translation surfaces in the three dimensional simply isotropic space $\mathbb{I}_{3}^{1}$
Main Article Content
Abstract
Article Details
References
M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom., 107(2016), 603--615.
B. Bukcu, D. W. Yoon and M. K. Karacan, Translation surfaces in the 3-dimensional simply isotropic space $mathbb{I}_{3}^{1}$ satisfying $Delta ^{III}x_{i}=lambda _{i}x_{i}$, Konuralp Journal of Mathematics, 4(2016), 275-281.
M. K. Karacan, D. W. Yoon and B. Bukcu, Translation surfaces in the three dimensional simply isotropic space $mathbb{I}_{3}^{1}$, Int. J. Geom. Methods Mod. Phys., 13(2016), 1650088.
M. K. Karacan and N. Yuksel, Translation Surfaces of Type $3$ in the Three Dimensional Simply Isotropic Space, submitted.
M. K. Karacan, N. Yuksel, A. Cakmak and S. Kizltug, Dual Surfaces Defined by $z=f(u)+g(v)$ in Simply Isotropic $3$-Space,submitted.
H. Pottmann, P. Grohs and N. J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity,Adv. Comput. Math., (2009),31:391.
H. Pottmann and Y. Liu, Discrete Surfaces in Isotropic Geometry, Mathematics of Surfaces XII,Volume 4647 of the series Lecture Notes in Computer Science, (2007), 341--363.
H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.
Z. M. Sipus, Translation Surfaces of constant curvatures in a simply Isotropic space}, Period Math. Hung., 68(2014),160--175.
K. Strubecker, Differentialgeometrie des Isotropen raumes III, Flachentheorie, Math. Zeitsch., 48(1942),369--427.
K. Strubecker, Duale Minimalflachen des isotropen Raumes, Rad JAZU, 382(1978), 91--107.
D. W. Yoon and J. W. Lee, Linear Weingarten Helicoidal Surfaces in Isotropic Space, Symmetry 2016, 8, 126; doi:10.3390/sym8110126