Helicoidal Surfaces in the three dimensional simply isotropic space I₃¹
Main Article Content
Abstract
Article Details
References
L. J. Alias, A. Ferrandez and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $Delta mathbf{x}=mathbf{Ax}+mathbf{B}$ , Pacific J. Math., (1992), 201--208.
M. E. Aydin, Classification results on surfaces in the isotropic 3-space,http://arxiv.org/pdf/1601.03190.pdf.
M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom, DOI 10.1007/s00022-015-0292-0.
C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Math. Messina Ser. II, 2(16)(1993), 31--42.
M. Bekkar, Surfaces of Revolution in the $3$-Dimensional Lorentz-Minkowski Space Satisfying $Delta mathbf{x}^{i}=mathbf{lambda}^{i}mathbf{x}^{i}$, Int. J. Contemp. Math. Sciences, 3(2008), 1173--1185.
S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math., 19(1995),351--367.
S. M. Choi, Y. H. Kim and D. W. Yoon, Some classification of surfaces of revolution in Minkowski 3-space, J. Geom., 104(2013),85--106.
B. Y. Chen, A report on submanifold of finite type, Soochow J. Math. 22(1996), 117--337.
F. Dillen, J. Pas and L. Vertraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13(1990), 10--21.
F. Dillen, J. Pas and L. Vertraelen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica, 18(1990), 239--246.
O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata, 34(1990), 105--112.
Ch. B. Hamed and M. Bekkar, Helicoidal Surfaces in the three-Dimensional Lorentz-Minkowski space satisfying $Delta mathbf{r}_{i}=%mathbf{lambda }_{i}r_{i},$ Int. J. Contemp. Math. Sciences, 4(2009), 311--327.
G. Kaimakamis, B. Papantoniou and K. Petoumenos, Surfaces
of revolution in the 3-dimensional Lorentz-Minkowski space satisfying $%Delta ^{mathbf{III}}mathbf{r}=mathbf{Ar}$, Bull. Greek Math. Soc., 50(2005), 75-90.
B. Senoussi and M. Bekkar, Helicoidal surfaces with $% Delta ^{J}r=Ar$textit{ in $3$-dimensional Euclidean space}, Stud. Univ. Babes-Bolyai Math., 60(3)(2015), 437--448.
Z. M. Sipus, Translation Surfaces of constant curvatures in a simply isotropic space, Period Math. Hung., 68(2014), 160--175.
K. Strubecker, Differentialgeometrie des isotropen Raumes III, Flachentheorie, Math. Zeitsch. 48(1942), 369--427.
T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18(1966), 380--385.
D. W. Yoon, Surfaces of Revolution in the three dimensional pseudo-galilean space, Glasnik Matematicki, 48(2013), 415--428.