The evolution of the electric field along optical fiber with respect to the type-2 and 3 PAFs in Minkowski 3-space

Main Article Content

Nevin Ertu\u{g} G\"{u}rb\"{u}z
Dae Won Yoon

Abstract

In this paper, we introduce the type-2 and the type-3 Positional Adapted Frame(PAF) of spacelike curve and timelike curve in
Minkowski 3-space. From these PAFs, we study the evolutions of the electric field vectors of the type-2 and type-3 PAFs.
As a result, we also investigate the Fermi-Walker parallel and the Lorentz force equation of the electric field vectors for the type-2 and type-3 PAFs in Minkowski 3-space.

Article Details

How to Cite
G\"{u}rb\"{u}z, N. E., & Yoon, D. W. (2023). The evolution of the electric field along optical fiber with respect to the type-2 and 3 PAFs in Minkowski 3-space. Tamkang Journal of Mathematics, 55(2), 113–128. https://doi.org/10.5556/j.tkjm.55.2024.5028
Section
Papers

References

bibitem {ARS}

newblock A. Arbind, J.N. Reddy and A.R. Srinivasa,

newblock A nonlinear 1-D finite element analysis of rods/tubes made of incompressible neo-Hookean materials using higher-order theory,

newblock Int. J. Solids Struct., textbf{166} (2019), 1--21.

bibitem {Be}

newblock M.V. Berry,

newblock Quantal phase factors accompanying adiabatic changes,

newblock Proc. R. Soc. Lond. A Math. Phys. Sci., textbf{ 392} (1984), 45--57.

bibitem {B}

newblock R.L. Bishop,

newblock There is more than one way to frame a curve,

newblock Am. Math. Mon., textbf{82} (1975), 246-251.

bibitem {BAD}

newblock K.Y. Bliokh, M.A. Alonso and M.R Dennis,

newblock Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects,

newblock Rep. Prog. Phys., textbf{82} (2019), 122401.

bibitem {G3}

newblock N.E. G"{u}rb"{u}z,

newblock The variation of the electric field along optic

fiber for null Cartan and pseudo null frames,

newblock Intern. J. Geom. Methods Mod. Phy., textbf{18} (2021), 2150122.

bibitem {G4} newblock N.E. G"{u}rb"{u}z,

newblock The pseudo null geometric phase along optical

fiber,

newblock Int. J. Geom. Methods Mod. Phys., accepted (2021).

bibitem {G5}

newblock N.E. G"{u}rb"{u}z,

newblock The Variation of Electric Field With Respect to

Darboux Triad in Euclidean 3-Space, Internal. J. Math. Combin., textbf{2} (2021), 17-32.

bibitem {G6}

newblock N.E G"{u}rb"{u}z,

newblock The evolution of the electric field with Frenet

frame in Lorentzian Lie groups,

newblock Optik, textbf{247} (2021), 167989.

bibitem {G7}

newblock N.E. G"{u}rb"{u}z,

newblock The evolution of an electric field with respect to

the type 1-PAF and PAFORS frames in $R_{1}^{3}$,

newblock Optik, textbf{250} (2022), 168285.

bibitem {GMM} newblock N.E. G"{u}rb"{u}z, R. Myrzakulov and Z. Myrzakulova,

newblock Three anholonomy densities for three formulations with anholonomic coordinates with hybrid frame in

$mathbb R^3_1$,

newblock Optik, textbf{ 261} (2022), 169161.

bibitem {GY} newblock N.E. G"{u}rb"{u}z and D.W. Yoon,

newblock The visco modified Heisenberg

ferromagnet equation and physical applications,

newblock Optik, textbf{248} (2021), 167815.

bibitem {Ha}

newblock F.D.M. Haldane,

newblock Path dependence of the geometric rotation of polarization

in optical fibers,

newblock Opt. Lett., textbf{11} (1986), p. 730.

bibitem {KD}

newblock T. Korpinar and R.C. Demirkol,

newblock Electromagnetic curves of the linearly

polarized light wave along an optical fiber in a 3D semi-Riemannian

manifold,

newblock J. Modern Optics, textbf{66} (2019), 857-867.

bibitem {KDA1}

newblock T. K"{o}rpinar, R.C. Demirkol and V. Asil,

newblock Directional magnetic and

electric vortex lines and their geometries,

newblock Indian J. Phys., textbf{95} (2020), 2393–2404.

bibitem {KK}

newblock T. K"{o}rpinar and Z. K"{o}rpinar,

newblock Hybrid optical electromotive with Heisenberg ferromagnetic system by fractional approach,

newblock Optik, textbf{247} (2021), 167684.

bibitem {OT1}

newblock K. E. "{O}zen and M. Tosun,

newblock A new moving frame for trajectories with non-vanishing angular momentum,

newblock J. Math. Sci. Model., textbf{4} (2021), 7-18.