The evolution of the electric field along optical fiber with respect to the type-2 and 3 PAFs in Minkowski 3-space
Main Article Content
Abstract
In this paper, we introduce the type-2 and the type-3 Positional Adapted Frame(PAF) of spacelike curve and timelike curve in
Minkowski 3-space. From these PAFs, we study the evolutions of the electric field vectors of the type-2 and type-3 PAFs.
As a result, we also investigate the Fermi-Walker parallel and the Lorentz force equation of the electric field vectors for the type-2 and type-3 PAFs in Minkowski 3-space.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
bibitem {ARS}
newblock A. Arbind, J.N. Reddy and A.R. Srinivasa,
newblock A nonlinear 1-D finite element analysis of rods/tubes made of incompressible neo-Hookean materials using higher-order theory,
newblock Int. J. Solids Struct., textbf{166} (2019), 1--21.
bibitem {Be}
newblock M.V. Berry,
newblock Quantal phase factors accompanying adiabatic changes,
newblock Proc. R. Soc. Lond. A Math. Phys. Sci., textbf{ 392} (1984), 45--57.
bibitem {B}
newblock R.L. Bishop,
newblock There is more than one way to frame a curve,
newblock Am. Math. Mon., textbf{82} (1975), 246-251.
bibitem {BAD}
newblock K.Y. Bliokh, M.A. Alonso and M.R Dennis,
newblock Geometric phases in 2D and 3D polarized fields: geometrical, dynamical, and topological aspects,
newblock Rep. Prog. Phys., textbf{82} (2019), 122401.
bibitem {G3}
newblock N.E. G"{u}rb"{u}z,
newblock The variation of the electric field along optic
fiber for null Cartan and pseudo null frames,
newblock Intern. J. Geom. Methods Mod. Phy., textbf{18} (2021), 2150122.
bibitem {G4} newblock N.E. G"{u}rb"{u}z,
newblock The pseudo null geometric phase along optical
fiber,
newblock Int. J. Geom. Methods Mod. Phys., accepted (2021).
bibitem {G5}
newblock N.E. G"{u}rb"{u}z,
newblock The Variation of Electric Field With Respect to
Darboux Triad in Euclidean 3-Space, Internal. J. Math. Combin., textbf{2} (2021), 17-32.
bibitem {G6}
newblock N.E G"{u}rb"{u}z,
newblock The evolution of the electric field with Frenet
frame in Lorentzian Lie groups,
newblock Optik, textbf{247} (2021), 167989.
bibitem {G7}
newblock N.E. G"{u}rb"{u}z,
newblock The evolution of an electric field with respect to
the type 1-PAF and PAFORS frames in $R_{1}^{3}$,
newblock Optik, textbf{250} (2022), 168285.
bibitem {GMM} newblock N.E. G"{u}rb"{u}z, R. Myrzakulov and Z. Myrzakulova,
newblock Three anholonomy densities for three formulations with anholonomic coordinates with hybrid frame in
$mathbb R^3_1$,
newblock Optik, textbf{ 261} (2022), 169161.
bibitem {GY} newblock N.E. G"{u}rb"{u}z and D.W. Yoon,
newblock The visco modified Heisenberg
ferromagnet equation and physical applications,
newblock Optik, textbf{248} (2021), 167815.
bibitem {Ha}
newblock F.D.M. Haldane,
newblock Path dependence of the geometric rotation of polarization
in optical fibers,
newblock Opt. Lett., textbf{11} (1986), p. 730.
bibitem {KD}
newblock T. Korpinar and R.C. Demirkol,
newblock Electromagnetic curves of the linearly
polarized light wave along an optical fiber in a 3D semi-Riemannian
manifold,
newblock J. Modern Optics, textbf{66} (2019), 857-867.
bibitem {KDA1}
newblock T. K"{o}rpinar, R.C. Demirkol and V. Asil,
newblock Directional magnetic and
electric vortex lines and their geometries,
newblock Indian J. Phys., textbf{95} (2020), 2393–2404.
bibitem {KK}
newblock T. K"{o}rpinar and Z. K"{o}rpinar,
newblock Hybrid optical electromotive with Heisenberg ferromagnetic system by fractional approach,
newblock Optik, textbf{247} (2021), 167684.
bibitem {OT1}
newblock K. E. "{O}zen and M. Tosun,
newblock A new moving frame for trajectories with non-vanishing angular momentum,
newblock J. Math. Sci. Model., textbf{4} (2021), 7-18.