On reproducing property and 2-cocycles
Main Article Content
Abstract
In this paper, we study reproducing kernels whose ranges are subsets of a $C^*$-algebra or a Hilbert $C^*$-module. In particular, we show how such a reproducing kernel can naturally be expressed in terms of operators on a Hilbert $C^*$-module. We focus on relative reproducing kernels and extend this concept to such spaces associated with cocycles.
Article Details
How to Cite
Hashemi Sababe, S., Ebadian, A., & Najafzadeh, S. (2018). On reproducing property and 2-cocycles. Tamkang Journal of Mathematics, 49(2), 143–153. https://doi.org/10.5556/j.tkjm.49.2018.2553
Issue
Section
Papers
References
J. G. Christensen, A. H. Darweesh and G. Olafsson, Coorbits for projective representations with an application to Bergman spaces,arXiv:1704.02522v1 [math.FA], 2017.
M. Frank and D.R. Larson, Frames in Hilbert $C^*$-modules and $C^*$-algebras, J. Operator theory,48 (2002), 273--314.
S. Hashemi Sababe and Ali. Ebadian, Some properties of reproducing kernel Banach and Hilbert spaces.
Sahand Communications in Mathematical Analysis. http://scma.maragheh.ac.ir/article_27822.html(2017). Accessed 11 October 2017.
J. Heo, Reproducing kernel Hilbert -modules and kernels associated with cocycles, Journal of Mathematical Physics,49(2008), 103507--103519.
M. H Hsu and N. C Wong, Inner products and module maps of Hilbert $C^* $-modules, Preprints.