Conditions for the univalence of certain integral operatos

Main Article Content

Rasoul Aghalary
Ali Ebadian
Parviz Arjomandinia

Abstract

In the present paper, we consider two integral operators defined on special subclass of $\mathcal{A}$,namely $U_n(\lambda,\mu)$ with $n\in\mathbb{N}$. Using the extension of Becker's lemma, we obtain new univalence criterions for the operators in the open unit disk $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}.$ Finally, we deduce some corollaries of the main results.

Article Details

How to Cite
Aghalary, R., Ebadian, A., & Arjomandinia, P. (2012). Conditions for the univalence of certain integral operatos. Tamkang Journal of Mathematics, 44(4), 387–393. https://doi.org/10.5556/j.tkjm.44.2013.1199
Section
Papers
Author Biographies

Rasoul Aghalary

Department ofMathematics, Faculty of Science, Urmia University, Urmia, Iran.

Ali Ebadian

Department ofMathematics, Faculty of Science, Urmia University, Urmia, Iran.

Parviz Arjomandinia

Department ofMathematics, Faculty of Science, Urmia University, Urmia, Iran.

References

R. Aghalary and A. Ebadian, The pre-schwarzian derivative and nonlinear integral transforms, J. Comp. Anal. Appl., 13(2011), 771--775.

D. Breaz and N. Breaz, Two integral operators, Stud. Babes-Bolyai Math., 47, (2002), 13--19.

P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.

B. A. Frasin, Order of convexity and univalency of general integral operator, J. Franklin Inst., 48,(2011), 1013--1019.

N. Pascu, An improvement of Becker's univalence criterion (Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43--48.

V. Pescar, A new generalization of Ahlfor's and Becker's criterion of univalence, Bull. Malays. Math. Soc., 19,(1996), 53--54.

S. Ponnusamy, Polya Schoenberg conjecture by Caratheodory functions, J. London Math. Soc., 51(1995), 93--104.

S. Ponnusamy and P. Sahoo, Geometric properties of certain linear integral transforms, Bull. Belg. Math. Soc. Simon Stevin, 12,(2005), 95--108.

N. Seenivasagan, Sufficient conditions for univalence, Appl. Math. E-notes, 8(2008), 30--35.