SCHATTEN-TYPE CLASSES ON SEQUENCE SPACES

Main Article Content

R. KHALIL
M. SALEH

Abstract




Let $H$ be a Hilbert space and $L(H)$ be the bounded linear operators on $H$. For $T\in L(H)$, let


$$||T||_P=\sup\left[\sum_{n=1}^\infty|<Te_n, e_n>|^p\right]^{1/p},$$


where the supremum is taken over all  orthonormal sequences $(e_n)$. Set $C_p(H)=\{T\in L(H) : ||T||_p<\infty\}$. The object of this paper is to define and study $C_p(X , Y)$ where $X$ and $Y$ are sequences spaces




Article Details

How to Cite
KHALIL, R., & SALEH, M. (1999). SCHATTEN-TYPE CLASSES ON SEQUENCE SPACES. Tamkang Journal of Mathematics, 30(1), 9–20. https://doi.org/10.5556/j.tkjm.30.1999.4194
Section
Papers

References

E. Behrends, $L^p$-Structure in Real Banach Spaces, Lecture Notes in Math. 613, Springer­ Verlag, New York, 1977.

J. Cohen, Absolutely $p$-summing, $p$-nuclear operators and their conjugates, Math. Ann. 201(1973), 177-200.

J. Diestel and Jr. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R. I., 1977.

A. Pietsch, Operator Ideals, North-Holland Publishing Company, Amsterdam, 1980.

J. R. Ringrose, Compact Non-self-adjoint Operators, Van Nostrand Rein Hold Company, London, 1971.

H. L. Royden, Real Analysis, Macmillan Publishing Co., INC. New York, 1968

J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridege Studies in Advanced Mathematics, no. 43, Cambridge University Press. 1995.