# ON FILTER EXPANSION OF TOPOLOGIES

## Main Article Content

## Abstract

The lower separation axioms $T_i$, ($i \in \{0, 1, 2\}$) are obviously preserved under topology expansions. This fact is not generally valid for higher separation axioms as well as for recent sorts of separation such as $T_R$, $R_0$, $R_1$ and semi-$R_i$, ($i \in \{0, 1\}$). The purpose of the present work is to investigate preservation of these recent separation properties under filter expansion of topologies. Also, we study the effect of filter expansions on the concept $s$-essentially $T_i$- spaces, ($i \in \{0, 1\}$).

## Article Details

*Tamkang Journal of Mathematics*,

*25*(1), 53–59. https://doi.org/10.5556/j.tkjm.25.1994.4425

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

## References

M. E. Abd EL-Monsef, E. F. Lashin, Filter extension of topologies, Proc. 3rd Conf. Math. Stat. O.R. and Appl. Bull. Fae. Sci. Alex. Univ. (1988).

N. Bourbaki, Elements of mathematics, General Topology, Part I (Herman, Paris, Addison -Wesley, Reading, Mass. 1966).

D. E. Cameron, "A class of maximal topologies", Pac. J. of Math. 70 (1977), 101-104.

S. G. Crossley, S.K. Hildebrand, "Semi-closure", Texas J. Sci. 22 (1971), 99-112.

A. Davis, "Indexed systems of neighborhoods for general topological spaces", Amer. Math. Monthly, 68 (1961), 886-893.

C. H. Dorsett, "$R_0$ and $R_1$ topological spaces", Math. Vesnik, 2 (15) (30), No.2 (1978), 117-122.

C. H. Dorsett, "Semi-$T_2$, semi-$R_1$ and semi-$R_0$ topological spaces", Ann. Soc. Sci. Bruxelles, Ser. I, 92 (1978), 143-159.

C. H. Dorsett, "$T_0$-identification spaces and $R_1$ spaces", Kyungpook Math. J. Volume 18, N. 2 (1978).

C. H. Dorsett, "Semi-$T_0$-identification spaces and $s$-essentially $T_0$- spaces", Pure Math. Manuscript 3 (1984), 23-32.

C. H. Dorsett, Semi-$T_0$-identification spaces and $s$-essentially $T_1$- spaces", Eleutheria Math. J. Sem. P. Zervas, 3 (1988), 4-16.

E. Hewitt, "A problem of set theoretic topology", Duke. Math. J. 10 (1943), 309-333.

G. Josep, "$T_{D^2}$ spaces and other axioms weaker than $T_0$", Act. Colloquim on topology (eger, Hungary, 1983).

G. Josep, "Axioms weaker than $R_0$", Mat. Vesnik 36 (1984), 195-205.

G. Josep, "Essentially $T_{D}$ and essentially $T_{UD}$ spaces", Bull. Math. Soc. Sci. Math. (Roumanie) 32 (80) N. 3 (1988).

N. Levine, "Semiopen sets and semi continuity in topological spaces", Amer. Math. Monthly 70 (1963), 36-41.

D.A. Maria and G. Josep, "On the separation axiom $R_T$", Kyungpook ·Math. J. Volume 26 N. 1 (1986), 67-72.

0. Njasted, "On some classes of nearly open sets", Pac. J. of Math. 15 (1965), 961-970.

M. W. Warner, "Some separation axioms weaker than To. Bull. Malaysian Math. Soc. 6 (1975), No. 3, 28-34.

S. Willard, General topology, Addison Wesley Publishing Co., 1970.