REMARKS ON THE *- TOPOLOGY
Main Article Content
Abstract
An ideal I on a set $X$ is a collection of subsets of $X$ which is closed under the operations of subset (heredity) and finite union (additivity). Ideals are useful in generation new spaces from the old ones. The central theme in this paper is to give new characterizations and properties to the *-topology in the sense of Hashimoto or I-topology in the sense of Vaidyanathaswamy and $\tau^*(I)$ in the sense of Hamlett, Rose and Jankovic. Several connections between the *-topology and other corresponding ones are investigated.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, "beta-open sets and , beta-continous mappings", Bull. Fae. Sci., Assiut Univ., 12 (1) (1983), 77-90.
M. E. Abd El-Monsef, I. A. Hasa"nein, A. S. Mashhour and T . Noiri, " Strongly compact spaces", Delta J. Sci. (8) (1984), 30-46.
M. E. Abd El-Monsef and A. M. Kozae, "On extremally disconnectedness ro-equivalence and properties of some maximal topologies proc". l h Conj. Oper. Res. and Math. Method, Alex. Univ. (1988).
D. Andrijevic, "Some properties of the topology of a-sets" Mate. Bee, 36, (1984), 1-9.
D. Andrijevic, M. Ganster, "A note on the topology generated by preopen sets", Mo.th. Vesnik, 39 (1987), 115-119.
S. G. Crossley and S. K. Hildebrand, "Semi-T opological properties ", Fund. Math, 74 (1972), 223-254.
, " Semi-invertible Spaces", Texas. J. Sci., 26 (1975), 319-324.
C. Dorsett, "Semi Convergence and semi Compactness", Indian J. Math. Mech. 19 (1981), 11-17.
P. H. Doyle and J. G. Hocking, "Invertible Spaces", Amer. Math. Monthly 68 (1961) 959-965.
M. Ganster, I. L. Reilly , "On some strong forms of paracompactness", Qand A in General Topology,Vol. ,5(1987).
T . R. Hamlett and D. Rose, "*-T opological properties(preprint)".
II. Hashimoto, "on the *-topology and its applications", Fund. Math., 91 (1976), 5-10. [13] D. S. Jankovioc, " Semiregular properties are semi-topological (preprint)".
D. Jankovic and T. R. Hamlett, "New Topologies from old vis Ideals", Amer. Mat,h. Monthly, 97, (1990), 295-310.
K. Kuratowski, Topologies I, Warszawa, 1933.
N. Levine, "Semi-open sets and semi-continuity in topological spaces", Amer. Math. Monthly , 10 (1963), 36-41.
- - , "Simple extensions of topologies", Amer. Math. Monthly, 71, (1.964), 22-25.
P. E Long, L. L. Herrington and D.S. Jankovic, "Almost-invertible spaces", Bull. Korean Math. Soc. 23 (1986) No. (2), 91-102.
A. S. Mashhour, "New types of topological spaces", publication Math. Debrecan, 17 (1970), 77-80.
A. S. Ma.shhour, M. E. Abd El-Monsef and S.N. El- Deeb, "On precontinuous and weak precontinuous mappings", proc. Math. and phys. Soc. Egypt (53) (1982), 47-53.
A. S. Mashhour, M. E. Abd El-Monsef and I. A. Hasanein: "On pretopological spaces", Bull. Math. Soc. R. S. Romania, 28 (76) (1984), 39-45.
A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb "alpha-continuous and alpha-open mappings, Acta", Math. Acad. Sci. Hungar, Vol. (41) {3+ 4) (1983), 213-218.
M. Mrsevic, I. L. Reilly and M. K Vamn amurthy, " On nearly Lindelof spaces", Glasnik Maternaticki, Vol. 21 (41) {1986), 407-414.
T. Natkaniec, "On I-continuity and J-semicontinuity points", Math. Slovaca, 36 (1986) No. 3, 297-312.
R. L. Newcomb, "Topologies which are compact modulo an ideal", Ph. D. dissertation, Univ. of Cal. at Santa Barbara, (1967).
0 . Nja.stad, "On some classes of nearly open sets", pacific J. Math. 15 {1965), 961-970.
I. L. Reilly and M. K. Vamanamurthy, " Connectedness and Strong semi-continuity Casopis pro pestovani matematiky roe" 109 (1984) 261-265.
- - , "On a-sets in Topological spaces",Tamkang J. of Math. Vol. 16, No. 1, (1985) pp. 7-11.
- - , "On a-continuity in Topological spaces", Acta Math. Hung. 45 (1-2) (1985) 27-32.
P. Samuels, "A topology formed from a given topology and an ideal", J. London Math. Soc. (2), 10 (1975), 409-416.
M. K. Singal and A. Mathur, "On nearly-compact spaces", Boll. U. M. I. (4) (2) (1969) 702-710.
T. S. Thompson, "S-closed spaces", Proc. Amer. Math. Soc, 60 {1976), 335-338.
R. Vaidyanathaswamy, "The localization theory in set-topology" Proc. Indian Acad. Sci, 20 (1945), 51-61.
-- - , " Set Topology", Chelsea publishing Company 1960.
S. P. Young, " Local discrete extensions of topologies kungbook", Math. J. 11 {1971), 21-24.