ON THE SCHWARZIAN COEFFICIENTS OF THE KOEBE TRANSFORM OF A UNIVALENT FUNCTION
Main Article Content
Abstract
For $f \in S$, we compute the Schwarzian coefficients of the Koebe Transform $f_{\phi_\alpha}$ of $f$ in terms of successive derivatives of the Schwarzian derivative, then provide some estimates on certain combinations of them.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
P. L. Duren, "Univalent Functions", Springer-Verlag, Heidelberg and New York, 1983.
G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable", English Transl., Amer. Math. Soc., Providence, R. I., 1969.
R. Harmelin, "Generalized Grunsky coefficients and inequalities", Israel J. of Math., Vol. 57, No. 3. (1987), 317-364.
E. Hille, "Analytic Function Theory", II, Chelsea, New York, 1962.
J. A. Hummel, "The Grunsky coefficients of a Schlicht function", Proc. Amer. Math. Soc., 15 (1964), 142-150.
J. A. Jenkins, "On certain coefficients of univalent functions" in Analytic Functions, Princeton Univ. Press, Princeton, N. J., 1960.
W. Kraus, "Uber den Zusamrnenhang einiger Charakteristiken eines einfach zusammen- ha.ngenden Bereiches mit der Kreisabbildung", Mitt. Math. Sem. Giessen, 21 (1932), 1-28.
Ch. Pommerenke, "Univalent Functions", Vandenhoeck and Ruprecht, Gottingen, 1975.
M. Schiffer, "Sur un probleme d'extemum de la representation conforrne", Bull. Soc. Math. France, 66 (1938), 48-55.
G. Schober, "Univalent Functions-Selected Topics", Lecture Notes in Math. No. 478, Springer-Verlag, 1975.
I. Schur, "On Faber Polynomials", Amer. J. Math., 67 (1945), 33-41.
P. Todorov, "Explicit Formulas for the coefficients of Faber polynomials with respect to univalent functions of the class E",Proc. Amer. Math. Soc., Vol. 82, Number 3, (1981), 431-438.
C. Fitzgerald and Ch. Pommerenke, "The de Branges theorem on univalent functions", Trans. Amer. Math. Soc., 290 (1985 ), 683-690.
S. Zemyan, "On the Schwarzian Coefficients of Univalent Functions", to appear in the Bulletin of the Australian Mathematical Society, 46 (1992),389-398.