ON SOME INTEGRAL REPRESENTATIONAL FORMULAS FOR SCHWARZIAN COEFFICIENTS WITH AN APPLICATION TO NUMBER THEORY

Main Article Content

STEPHEN M. ZEMYAN

Abstract




We develop integral representational formulas for all Sch­warzian coefficients of single-slit mappings by utilizing Lowner's Para­metric Method. As an application, we evaluate a complicated number­ theoretic sum.




Article Details

How to Cite
ZEMYAN, S. M. (1992). ON SOME INTEGRAL REPRESENTATIONAL FORMULAS FOR SCHWARZIAN COEFFICIENTS WITH AN APPLICATION TO NUMBER THEORY. Tamkang Journal of Mathematics, 23(4), 327–335. https://doi.org/10.5556/j.tkjm.23.1992.4556
Section
Papers

References

P. L. Duren, "Univalent Functions", Springer-Verlag, Heidelberg and New York, 1983.

G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable", English Transl., Amer. Math Soc., Providence, R. I., 1969.

R. Harmelin, "Generalized Grunsky coefficient.sand inequalities", Israel J. of Math., Vol. 57, No. 3. (1987), 317-364.

E. Hille, "Analytic Function Theory", II, Chelsea, New York, 1962.

J. A. Hummel, "The Grunsky coefficients of a schlicht function", Proc. Amer. Math. Soc., 15 {1964), 142-150.

J. A. Jenkins, "On certain coefficients of univalent functions in Analytic Functions" Princeton Univ. Press, Princeton, N.J ., 1960.

W. Kraus, "Uger den Zusarmmenhang einiger Charakteristiken eines einfach zusammen- hängenden Bereiches mit der Kreisabbildung", Mitt. Math. Sem. Giessen, 21 (1932), 1-28.

Ch. Pommerenke, "Univalent Functions", Vandenhoeck and Ruprecht Gottingen, 1975.

M. Schiffer, "Sur un probleme d'extremum de la representation conforme", Bull. Soc. Math. France, 66 (1938), 48-55.

G. Schober, "Univalent Functions-Selected Topics", Lecture Notes in Math. No. 478, Spr­inger-Verlag, 1975.

I. Schur, "On Faber Polynomials", Amer. J. Math., 67 (1945), 33-41.

P. Todorov, "Explicit Formulas for the coefficients of Faber polynomials with respect to univalent functions of the class I:",Proc. Amer. Math. Soc., Vol. 82, Number 3, (1981), 431-438.

C. Fitzgerald and Ch. Pommerenke, "The de Branges theorem on univalent functions", Trans. Amer. Math. Soc., 290 (1985), 683-690.

S. Zemyan, "On the Schwarzian Coefficients of Univalent Functions", Bull. Austral. Math. Soc., Vol. 46 (1992), 389-198.