ROTARU ALPHA - CONVEX FUNCTIONS
Main Article Content
Abstract
Let S∗(a,b) denote the class of analytic functions f in the unit disc E, with f(0)=f′(0)−1=0, satisfying the condition |(zf′(z)/f(z))−a|<b, a∈C, |a−1|<b≤Re(a), z∈E. In this paper the class S∗(α,a,b) of functions f analytic in E, with f(0)=f′(0)−1=0, f(z)f′(z)/z≠0 for z in E and satisfying in E the condition |J(α,f)−a|<b, a∈C, |a−1|<b≤Re(a), where J(α,f)=(1−α)(zf′(z)/f(z))+α((zf′(z))′/f′(z)), α a non-negative real number is introduced. It is proved that S∗(α,a,b)⊂S∗(a,b), if a>(4b/c)|Im(a)|, c=(b2−|a−1|2)/b. Further a representation formula for f∈S∗(α,a,b) and an inequality relating the coefficients of functions in S∗(α,a,b) are obtained.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
I. S. Jack, "Functions starlike and convex of order alpha", J. London Math. Soc., 2 (3) (1971), 469-479.
S. S. Miller, P. T. Mocanu and M. O. Reade, "All alpha-convex functions are starlike and univalent", Proc. Amer. Math. Soc., 37, 2(1973), 553-554.
S. S. Miller, P. T. Mocanu and M. O. Reade, "Bazilevic functions and generalized convexity", Rev. Roum. D. Math. Pure. Et. Appli., 19 (1974), 213-224.
S. S. Miller, P. T. Mocanu and M. O. Reade, "Janowski alpha-convex functions", Annal. UMSL. Polon., 29 (1975), 93-98.
K. S. Padmanabhan and R. Bharati, "On a subclass of univalent functions-I", Annal. Polon. Math., XLIII (1983), 57-64.
P. Rotaru, "Subclasses of starlike functions", Mathematica, 29/ 52, 2 (1987), 183-191.