ROTARU ALPHA - CONVEX FUNCTIONS
Main Article Content
Abstract
Let $S^*(a,b)$ denote the class of analytic functions $f$ in the unit disc $E$, with $f(0) =f'(0) - 1 =0$, satisfying the condition $|(zf'(z)/f(z))- a|<b$, $a\in C$, $|a- 1|<b\le Re(a)$, $z\in E$. In this paper the class $S^*(\alpha, a, b)$ of functions $f$ analytic in $E$, with $f(0) = f'(0)- 1 =0$, $f(z)f'(z)/z\neq 0$ for $z$ in $E$ and satisfying in $E$ the condition $|J(\alpha,f)- a|<b$, $a \in C$, $|a-1|<b\le Re(a)$, where $J(\alpha, f) =(1- \alpha)(zf'(z)/f(z)) +\alpha((zf'(z))'/f'(z))$, $\alpha$ a non-negative real number is introduced. It is proved that $S^*(\alpha, a,b)\subset S^*(a,b)$, if $a> (4b/c)|Im(a)|$, $c=(b^2- |a- 1|^2)/b$. Further a representation formula for $f \in S^*(\alpha, a, b)$ and an inequality relating the coefficients of functions in $S^*(\alpha, a, b)$ are obtained.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
I. S. Jack, "Functions starlike and convex of order alpha", J. London Math. Soc., 2 (3) (1971), 469-479.
S. S. Miller, P. T. Mocanu and M. O. Reade, "All alpha-convex functions are starlike and univalent", Proc. Amer. Math. Soc., 37, 2(1973), 553-554.
S. S. Miller, P. T. Mocanu and M. O. Reade, "Bazilevic functions and generalized convexity", Rev. Roum. D. Math. Pure. Et. Appli., 19 (1974), 213-224.
S. S. Miller, P. T. Mocanu and M. O. Reade, "Janowski alpha-convex functions", Annal. UMSL. Polon., 29 (1975), 93-98.
K. S. Padmanabhan and R. Bharati, "On a subclass of univalent functions-I", Annal. Polon. Math., XLIII (1983), 57-64.
P. Rotaru, "Subclasses of starlike functions", Mathematica, 29/ 52, 2 (1987), 183-191.