ON AN INTEGRAL INEQUALITY OF R. BELLMAN

Main Article Content

HORST ALZER

Abstract




We prove: if $u$ and $v$ are non-negative, concave functions defined on $[0, 1]$ satisfying


\[\int_0^1 (u(x))^{2p} dx =\int_0^1 (v(x))^{2q} dx=1, \quad p>0, \quad q>0,\]


then


\[\int_0^1(u(x))^p (v(x))^q dx\ge\frac{2\sqrt{(2p+1)(2q+1)}}{(p+1)(q+1)}-1.\]




Article Details

How to Cite
ALZER, H. (1991). ON AN INTEGRAL INEQUALITY OF R. BELLMAN. Tamkang Journal of Mathematics, 22(2), 187–191. https://doi.org/10.5556/j.tkjm.22.1991.4597
Section
Papers

References

E.F . Beckenbach and R. Bellman, "Inequalities," Springer, Berlin, 1983.

R. Bellman, "Converses of Schwarz's inequality," Duke Math. J. 23(1956), 429-434.

J L. Berwald, "Verallgemeinerung eines Mittelwertsatzes von J. Favard fiir positive konkave Funktionen," Acta Math. 79(1947), 17-37.

D. S. Mitrinovic, "Analytic Inequalities," Springer, New York, 1970.

C.-L. Wang, "An extension of a Bellman inequality," Utilitas Math. 8(1975), 251-256.