Fixed point theorems with PPF dependence in strong partial b-metric spaces
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Abbas, M., Khamsi, M. A. and Khan, A. R. (2011). Common fixed point and invariant
approximation in hyperbolic ordered metric spaces. Fixed Point Theory and Applications,
(1), 1-14.
Bernfeld, S. R., Lakshmikantham, V. and Reddy, Y. M. (1977). Fixed point theorems of
operators with PPF dependence in Banach spaces. Applicable Analysis, 6(4), 271-280.
Agarwal, R. P., Kumam, P. and Sintunavarat, W. (2013). PPF dependent fixed point
theorems for an αc-admissible non-self mapping in the Razumikhin class. Fixed Point Theory
and Applications, 2013(1), 1-14.
Ciric, L. B., Alsulami, S. M., Salimi, P. and Vetro, P. (2014). PPF dependent fixed point
results for triangular αc-admissible mappings. The Scientific World Journal, 2014.
Hussain, N., Khaleghizadeh, S., Salimi, P. and Akbar, F. (2013, January). New fixed point
results with PPF dependence in Banach spaces endowed with a graph. In Abstract and
Applied Analysis (Vol. 2013). Hindawi.
Kaewcharoen, A. (2013). PPF dependent common fixed point theorems for mappings in
Banach spaces. Journal of Inequalities and Applications, 2013(1), 1-14.
Kutbi, M. A., Hussain, N. and Khaleghizadeh, S. (2015). New PPF dependent fixed point
theorems for Suzuki type GF-contractions. Journal of Function Spaces, 2015.
Dhage, B. C. (2012). Fixed point theorems with PPF dependence and functional differential
equations. Fixed Point Theory, 13(2), 439-452.
Dhage, B. C. (2012). Some basic random fixed point theorems with PPF dependence and
functional random differential equations. Differ. Equ. Appl, 4(2), 181-195.
Parvaneh, V., Hosseinzadeh, H., Hussain, N. and Ciri´c, L. (2016). PPF dependent fixed ´
point results for hybrid rational and Suzuki-Edelstein type contractions in Banach spaces.
Filomat, 30(5), 1339-1351.
Wardowski, D. (2012). Fixed points of a new type of contractive mappings in complete metric
spaces. Fixed point theory and applications, 2012(1), 1-6.
Abbas, M., Ali, B. and Romaguera, S. (2013). Fixed and periodic points of generalized
contractions in metric spaces. Fixed Point Theory and Applications, 2013(1), 1-11.
Batra, R., and Vashistha, S. (2014). Fixed points of an F-contraction on metric spaces with
a graph. International Journal of Computer Mathematics, 91(12), 2483-2490.
Batra, R., Vashistha, S. and Kumar, R. (2014). A coincidence point therem for F-contractions
on metric spaces equipped with an altered distance. J. Math. Comput. Sci., 4(5), 826-833.
Acar, O. and Altun, I. (2014). A fixed point theorem for multivalued mappings with-distance. ¨
In Abstract and Applied Analysis (Vol. 2014). Hindawi.
Acar, O., Durmaz, G. and Mnak, G. (2014). Generalized multivalued F-contractions on
complete metric spaces.
Moshokoa, S. and Ncongwane, F. (2020). On completeness in strong partial b-metric spaces,
strong b-metric spaces and the 0-Cauchy completions. Topology and its Applications, 275,
Wardowski, D. (2018). Solving existence problems via F-contractions. Proceedings of the
american mathematical society, 146(4), 1585-1598.
Turinici, M. (2012). Wardowski implicit contractions in metric spaces. arXiv preprint
arXiv:1211.3164.