Some fixed point results for nonlinear $F$-type contractions in strong partial b-metric spaces
Main Article Content
Abstract
In this article, we demonstrate some fixed point results that generalises the Banach
contraction principle in a different way from the previously established literature findings. We
provide some fixed point findings for non linear F type contractions in Strong Partial b-Metric
Spaces (SPbMS). We also include some examples that demonstrates the applicability of our
findings.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Abbas, M., Khamsi, M. A., and Khan, A. R. (2011). Common fixed point and invariant
approximation in hyperbolic ordered metric spaces. Fixed Point Theory and Applications,
(1), 1-14.
Bakhtin, I. (1989). The contraction mapping principle in quasimetric spaces. Functional
analysis, 30, 26-37.
Banach, S. (1922). Sur les op´erations dans les ensembles abstraits et leur application aux
´equations int´egrales. Fund. math, 3(1), 133-181.
Bourbaki, N. (1974). Topologie Generale Herman: Paris, France.
Chatterjea, S. (1972). Fixed-point theorems. Dokladi na Bolgarskata Akademiya na Naukite,
(6), 727-+.
Ciri´c, L. B. (1974). A generalization of Banach’s contraction principle. Proceedings of the ´
American Mathematical society, 45(2), 267-273.
Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta mathematica et
informatica universitatis ostraviensis, 1(1), 5-11.
Jleli, M., and Samet, B. (2014). A new generalization of the Banach contraction principle.
Journal of inequalities and applications, 2014(1), 1-8.
Jleli, M., Karapınar, E., and Samet, B. (2014). Further generalizations of the Banach
contraction principle. Journal of Inequalities and Applications, 2014(1), 1-9.
Kari, A., Rossafi, M., Marhrani, E. M., and Aamri, M. (2020). Contraction on Complete
Rectangular Metric Spaces. International Journal of Mathematics and Mathematical
Sciences, 2020.
Kannan, R. (1968). Some results on fixed points. Bull. Cal. Math. Soc., 60, 71-76.
Kannan, R. (1969). Some results on fixed points—II. The American Mathematical Monthly,
(4), 405-408.
Kirk, W., and Shahzad, N. (2014). Fixed point theory in distance spaces. Cham, Switzerland:
Springer International Publishing.
Matthews, S. G. (1994). Partial metric topology. Annals of the New York Academy of
Sciences, 728(1), 183-197.
Moshokoa, S., and Ncongwane, F. (2020). On completeness in strong partial b-metric spaces,
strong b-metric spaces and the 0-Cauchy completions. Topology and its Applications, 275,
Mustafa, Z., and Sims, B. (2006). A new approach to generalized metric spaces. Journal of
Nonlinear and convex Analysis, 7(2), 289.
Reich, S: Kannan’s fixed point theorem. Boll. Unione Mat. Ital. 4, 1-11 (1971)
Suzuki, T. (2008). A generalized Banach contraction principle that characterizes metric
completeness. Proceedings of the American mathematical Society, 136(5), 1861-1869.
Turinici, M. (2012). Wardowski implicit contractions in metric spaces. arXiv preprint
arXiv:1211.3164.
Vetro, F. (2011). On approximating curves associated with nonexpansive mappings.
Carpathian Journal of Mathematics, 142-147.
Wardowski, D. (2012). Fixed points of a new type of contractive mappings in complete metric
spaces. Fixed point theory and applications, 2012(1), 1-6.
Wardowski, D. (2018). Solving existence problems via F-contractions. Proceedings of the
american mathematical society, 146(4), 1585-1598.