On the numerical radius of an upper triangular operator matrix

Main Article Content

Mehdi Naimi
Mohammed Benharrat


The main purpose of this paper is to give an improvement of numerical radius inequality for an upper triangular operator matrix.

Article Details

How to Cite
Naimi, M., & Benharrat, M. (2023). On the numerical radius of an upper triangular operator matrix. Tamkang Journal of Mathematics, 55(2), 195–201. https://doi.org/10.5556/j.tkjm.55.2024.5094


P. A. Fillmore, J. G. Stampfli, J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged), 33 (1972), 179-192.

S. R. Foguel, A counter example to a problem of Sz.-Nagy, Proc. Amer. Math. Soc, 15 (1964), 788–790.

S. R. Garcia, The norm and modulus of a Foguel operator, Indiana Univ. Math. J, 58 (2009), 2305-2315.

H. L. Gau, K. Z. Wang and P. Y. Wu, Numerical ranges of Foguel operators, Linear Algebra Appl., 610 (2021), 766-784.

K. E. Gustafson and D. K. M. Rao, Numerical range. The field of values of linear operators and matrices, Springer-Verlag, New York, 1997.

O. Hirzallah, F. Kittaneh, K. Shebrawi, Numerical Radius Inequalities for Certain $2 times 2$ Operator Matrices. Integr. Equ. Oper. Theory, 71 (2011), 129-147.

F. Kittaneh, A numerical radius inequalities and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math, 158 (2003), 11-17.

F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Mathematica, 168.1 (2005), pp. 73-80.

B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutat'{o} Int. K"{o}zl, 4 (1959), 89-93.