Further inequalities for the numerical radius of off-diagonal part of 2 by 2 operator matrices
Main Article Content
Abstract
In this paper, using a refinement of the classical Young inequality, we present some new upper weighted bounds for the numerical radius of $2\times 2$ block matrices, with entries are bounded operators.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. Bakherad, K. Shebrawi, Upper bounds for numerical radius inequalities involving offdiagonal
operator matrices, Ann. Funct. Anal., 9, 3 (2018), 297–309. https://doi.org/
1215/20088752-2017-0029
P. Bhunia, K. Paul, Furtherance of numerical radius inequalities of Hilbert space operators,
Arch. Math., 117, (2021), 537–546. https://doi.org/10.1007/s00013-021-01641-w
P. Bhunia, K. Paul, Proper Improvement of Well-Known Numerical Radius Inequalities
and Their Applications, Results Math., 76, 177 (2021). https://doi.org/10.1007/
s00025-021-01478-3
M. El-Haddad, F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II,
Studia Math., 182, 2 (2007), 133–140.
O. Hirzallah, F. Kittaneh, and K. Shebrawi, Numerical radius inequalities for certain 2 × 2
operator matrices, Integr. Equ. Oper. Theory., 71, 129 (2011). https://doi.org/10.1007/
s00020-011-1893-0
F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the
Frobenius companion matrix, Studia Math., 158, (2003), 11–17.
F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal., 143, (1997),
–348.
F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math.
Sci., 24, (1988), 283–293.
F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168,
(2005), 73–80.
F. Kittaneh, Y. Mansarah, Improved Young and Heinz inequalities for matrices, J. Math.
Anal. Appl., 361, (2010), 262–269.
M. Naimi, M. Benharrat, On the numerical radius of an upper triangular operator matrix,
Tamkang J. Math., 55, 2 (2024), 195–201.
M. Naimi, M. Benharrat, Anderson’s theorem for some class of operators, Khayyam J. Math.,
, (2) (2020), 236-242.
K. Shebrawi, H. Albadawi, Numerical Radius and Operator Norm Inequalities, J. of Inequal.
Appl., 2009, (2009), 1–11.
A. Sheikhhosseini, M. Khosravi, M. Sababheh, The weighted numerical radius, Ann. Funct.
Anal., 13, 3 (2022). https://doi.org/10.1007/s43034-021-00148-3
B. Simon, Trace Ideals and Their Applications, Cambridge University Press, 1979.
T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition,
Studia Math., 178, (2007), 83–89.