Certain coefficient problems of $\mathcal{S}_{e}^{*}$ and $\mathcal{C}_{e}$

Main Article Content

Sivaprasad Kumar Shanmugam
Neha Verma

Abstract

In this current study, we consider the classes $\mathcal{S}^{*}_{e}$ and $\mathcal{C}_e$ to obtain sharp bounds for the third Hankel determinant for functions within these classes. Additionally, we provide estimates for the sixth and seventh coefficients while establishing the fourth-order Hankel determinant as well.

Article Details

How to Cite
Shanmugam, S. K., & Neha Verma. (2024). Certain coefficient problems of $\mathcal{S}_{e}^{*}$ and $\mathcal{C}_{e}$. Tamkang Journal of Mathematics. https://doi.org/10.5556/j.tkjm.56.2025.5182
Section
Papers
Author Biography

Sivaprasad Kumar Shanmugam

References

bibitem{alarif}

newblock N. M. Alarifi, R. M. Ali and V. Ravichandran,

newblock On the second Hankel determinant for the $k$th-root transform of analytic functions,

newblock Filomat {bf 31} (2017), no.~2, 227--245.

bibitem{sharp}

newblock S. Banga and S. S. Kumar,

newblock The sharp bounds of the second and third Hankel determinants for the class $mathcal{SL}^*$,

newblock Math. Slovaca textbf {70} (2020), 849--862.

bibitem{darus}

newblock M. Darus,

newblock Hankel determinant for certain class of analytic function defined by generalized derivative operator,

newblock Tamkang J. Math., {bf 43} (2012), no.~3, pp.445-453.

bibitem{goel}

newblock P. Goel and S. S. Kumar,

newblock Certain class of starlike functions associated with modified sigmoid function,

newblock Bull. Malays. Math. Sci. Soc., {bf 43} (2020), no.~1, 957--991.

bibitem{goodman vol1}

newblock A.W. Goodman,

newblock Univalent Functions,

newblock Mariner, Tampa (1983).

bibitem{1janowski}

newblock W. Janowski,

newblock Extremal problems for a family of functions with positive real part and for some related families,

newblock Ann. Polon. Math. {bf 23} (1970/71), 159--177.

bibitem{kowal}

newblock B. Kowalczyk and A. Lecko,

newblock The sharp bound of the third Hankel determinant for functions of bounded turning,

newblock Bol. Soc. Mat. Mex. (3) {bf 27} (2021), no.~3, Paper No. 69, 13 pp.

bibitem{4/9}

newblock B. Kowalczyk, A. Lecko and D. K. Thomas,

newblock The sharp bound of the third Hankel determinant for starlike functions,

newblock Forum Mathematicum. De Gruyter, (2022)

bibitem{krishna bezilevic}

newblock D. V. Krishna and T. RamReddy,

newblock Second Hankel determinant for the class of Bazilevic functions,

newblock Stud. Univ. Babec{s}-Bolyai Math. {bf 60} (2015), no.~3, 413--420.

bibitem{kund}

newblock S. N. Kund, and A. K. Mishra,

newblock The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator,

newblock Tamkang J. Math., {bf 44} (2013), no.~1, pp.73-82.

bibitem{bellv}

newblock V. Kumar, N. E. Cho, V. Ravichandran and H. M. Srivastava,

newblock Sharp coefficient bounds for starlike functions associated with the Bell numbers,

newblock Math. Slovaca {bf 69} (2019), no.~5, 1053--1064.

bibitem{kumar-ganganiaCardioid-2021}

newblock S.~S. Kumar and G. Kamaljeet,

newblock A cardioid domain and starlike functions,

newblock Anal. Math. Phys., {bf 11} (2021), no.~2, Paper No. 54, 34 pp.

bibitem{lemma1}

newblock O. S. Kwon, A. Lecko and Y. J. Sim,

newblock On the fourth coefficient of functions in the Carath'{e}odory class,

newblock Comput. Methods Funct. Theory {bf 18} (2018), no.~2, 307--314.

bibitem{sharpstarlike}

newblock O.S. Kwon, A. Lecko and Y. J. Sim,

newblock The bound of the Hankel determinant of the third kind for starlike functions,

newblock Bull. Malays. Math. Sci. Soc. {bf 42} (2019), no.~2, 767--780.

bibitem{lecko 1/2 bound}

newblock A. Lecko, Y. J. Sim and B. '{S}miarowska,

newblock The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2,

newblock Complex Anal. Oper. Theory {bf 13} (2019), no.~5, 2231--2238.

bibitem{rj}

newblock R. J. Libera and E. J. Zl otkiewicz,

newblock Early coefficients of the inverse of a regular convex function,

newblock Proc. Amer. Math. Soc. {bf 85} (1982), no.~2, 225--230.

bibitem{ma-minda}

newblock W. C. Ma and D. Minda,

newblock A unified treatment of some special classes of univalent functions,

newblock Proc. Confer. on Complex Analysis (Tianjin, 1992), 157--169. %, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA

bibitem{mendi}

newblock R. Mendiratta, S. Nagpal and V. Ravichandran,

newblock On a subclass of strongly starlike functions associated with exponential function,

newblock Bull. Malays. Math. Sci. Soc. {bf 38} (2015), no.~1, 365--386.

bibitem{adibastarlikenessexponential}

newblock A. Naz, S. Nagpal and V. Ravichandran,

newblock Starlikeness associated with the exponential function, newblock Turkish J. Math. {bf 43} (2019), no.~3, 1353--1371.

bibitem{pomi}

newblock C. Pommerenke,

newblock On the coefficients and Hankel determinants of univalent functions,

newblock J. London Math. Soc., {bf 41} (1966), 111–122.

bibitem{ponnusamy}

newblock S. Ponnusamy, N. L. Sharma and K. J. Wirths,

newblock Logarithmic coefficients problems in families related to starlike and convex functions,

newblock J. Austr. Math. Soc., {bf 109} (2020), no.~2, pp.230-249.

bibitem{raina}

newblock R. K. Raina and J. Sok'{o}l,

newblock Some properties related to a certain class of starlike functions,

newblock C. R. Math. Acad. Sci. Paris, {bf 353} (2015), no.~11, 973--978.

bibitem{shelly}

newblock V. Ravichandran and S. Verma,

newblock Bound for the fifth coefficient of certain starlike functions,

newblock C. R. Math. Acad. Sci. Paris {bf 353} (2015), no.~6, 505--510.

bibitem{stan}

newblock J. Sok'{o}l and J. Stankiewicz,

newblock Radius of convexity of some subclasses of strongly starlike functions,

newblock Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101--105.

bibitem{nehacardioid}

newblock N. Verma, S. S. Kumar,

newblock A Conjecture on $H_3(1)$ for certain Starlike Functions, newblock Math. Slovaca. {bf 73} (2023), no.~5, 1--10.

bibitem{nehadiffexpo}

newblock N. Verma and S. S. Kumar,

newblock Higher Order Differential Subordination for $mathcal{S}^{*}_e$,

newblock arXiv e-prints, pp.arXiv:2306.11215(2023).

bibitem{zap}

newblock P. Zaprawa,

newblock Third Hankel determinants for subclasses of univalent functions,

newblock Mediterr. J. Math. {bf 14} (2017), no.~1, Paper No. 19, 10 pp.

bibitem{zap2019}

newblock P. Zaprawa,

newblock Hankel determinants for univalent functions related to the exponential function,

newblock Symm. {bf 11} (2019), no.~3, Paper No. 10, 1211 pp.