Certain coefficient problems of $\mathcal{S}_{e}^{*}$ and $\mathcal{C}_{e}$
Main Article Content
Abstract
In this current study, we consider the classes $\mathcal{S}^{*}_{e}$ and $\mathcal{C}_e$ to obtain sharp bounds for the third Hankel determinant for functions within these classes. Additionally, we provide estimates for the sixth and seventh coefficients while establishing the fourth-order Hankel determinant as well.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
bibitem{alarif}
newblock N. M. Alarifi, R. M. Ali and V. Ravichandran,
newblock On the second Hankel determinant for the $k$th-root transform of analytic functions,
newblock Filomat {bf 31} (2017), no.~2, 227--245.
bibitem{sharp}
newblock S. Banga and S. S. Kumar,
newblock The sharp bounds of the second and third Hankel determinants for the class $mathcal{SL}^*$,
newblock Math. Slovaca textbf {70} (2020), 849--862.
bibitem{darus}
newblock M. Darus,
newblock Hankel determinant for certain class of analytic function defined by generalized derivative operator,
newblock Tamkang J. Math., {bf 43} (2012), no.~3, pp.445-453.
bibitem{goel}
newblock P. Goel and S. S. Kumar,
newblock Certain class of starlike functions associated with modified sigmoid function,
newblock Bull. Malays. Math. Sci. Soc., {bf 43} (2020), no.~1, 957--991.
bibitem{goodman vol1}
newblock A.W. Goodman,
newblock Univalent Functions,
newblock Mariner, Tampa (1983).
bibitem{1janowski}
newblock W. Janowski,
newblock Extremal problems for a family of functions with positive real part and for some related families,
newblock Ann. Polon. Math. {bf 23} (1970/71), 159--177.
bibitem{kowal}
newblock B. Kowalczyk and A. Lecko,
newblock The sharp bound of the third Hankel determinant for functions of bounded turning,
newblock Bol. Soc. Mat. Mex. (3) {bf 27} (2021), no.~3, Paper No. 69, 13 pp.
bibitem{4/9}
newblock B. Kowalczyk, A. Lecko and D. K. Thomas,
newblock The sharp bound of the third Hankel determinant for starlike functions,
newblock Forum Mathematicum. De Gruyter, (2022)
bibitem{krishna bezilevic}
newblock D. V. Krishna and T. RamReddy,
newblock Second Hankel determinant for the class of Bazilevic functions,
newblock Stud. Univ. Babec{s}-Bolyai Math. {bf 60} (2015), no.~3, 413--420.
bibitem{kund}
newblock S. N. Kund, and A. K. Mishra,
newblock The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator,
newblock Tamkang J. Math., {bf 44} (2013), no.~1, pp.73-82.
bibitem{bellv}
newblock V. Kumar, N. E. Cho, V. Ravichandran and H. M. Srivastava,
newblock Sharp coefficient bounds for starlike functions associated with the Bell numbers,
newblock Math. Slovaca {bf 69} (2019), no.~5, 1053--1064.
bibitem{kumar-ganganiaCardioid-2021}
newblock S.~S. Kumar and G. Kamaljeet,
newblock A cardioid domain and starlike functions,
newblock Anal. Math. Phys., {bf 11} (2021), no.~2, Paper No. 54, 34 pp.
bibitem{lemma1}
newblock O. S. Kwon, A. Lecko and Y. J. Sim,
newblock On the fourth coefficient of functions in the Carath'{e}odory class,
newblock Comput. Methods Funct. Theory {bf 18} (2018), no.~2, 307--314.
bibitem{sharpstarlike}
newblock O.S. Kwon, A. Lecko and Y. J. Sim,
newblock The bound of the Hankel determinant of the third kind for starlike functions,
newblock Bull. Malays. Math. Sci. Soc. {bf 42} (2019), no.~2, 767--780.
bibitem{lecko 1/2 bound}
newblock A. Lecko, Y. J. Sim and B. '{S}miarowska,
newblock The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2,
newblock Complex Anal. Oper. Theory {bf 13} (2019), no.~5, 2231--2238.
bibitem{rj}
newblock R. J. Libera and E. J. Zl otkiewicz,
newblock Early coefficients of the inverse of a regular convex function,
newblock Proc. Amer. Math. Soc. {bf 85} (1982), no.~2, 225--230.
bibitem{ma-minda}
newblock W. C. Ma and D. Minda,
newblock A unified treatment of some special classes of univalent functions,
newblock Proc. Confer. on Complex Analysis (Tianjin, 1992), 157--169. %, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA
bibitem{mendi}
newblock R. Mendiratta, S. Nagpal and V. Ravichandran,
newblock On a subclass of strongly starlike functions associated with exponential function,
newblock Bull. Malays. Math. Sci. Soc. {bf 38} (2015), no.~1, 365--386.
bibitem{adibastarlikenessexponential}
newblock A. Naz, S. Nagpal and V. Ravichandran,
newblock Starlikeness associated with the exponential function, newblock Turkish J. Math. {bf 43} (2019), no.~3, 1353--1371.
bibitem{pomi}
newblock C. Pommerenke,
newblock On the coefficients and Hankel determinants of univalent functions,
newblock J. London Math. Soc., {bf 41} (1966), 111–122.
bibitem{ponnusamy}
newblock S. Ponnusamy, N. L. Sharma and K. J. Wirths,
newblock Logarithmic coefficients problems in families related to starlike and convex functions,
newblock J. Austr. Math. Soc., {bf 109} (2020), no.~2, pp.230-249.
bibitem{raina}
newblock R. K. Raina and J. Sok'{o}l,
newblock Some properties related to a certain class of starlike functions,
newblock C. R. Math. Acad. Sci. Paris, {bf 353} (2015), no.~11, 973--978.
bibitem{shelly}
newblock V. Ravichandran and S. Verma,
newblock Bound for the fifth coefficient of certain starlike functions,
newblock C. R. Math. Acad. Sci. Paris {bf 353} (2015), no.~6, 505--510.
bibitem{stan}
newblock J. Sok'{o}l and J. Stankiewicz,
newblock Radius of convexity of some subclasses of strongly starlike functions,
newblock Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101--105.
bibitem{nehacardioid}
newblock N. Verma, S. S. Kumar,
newblock A Conjecture on $H_3(1)$ for certain Starlike Functions, newblock Math. Slovaca. {bf 73} (2023), no.~5, 1--10.
bibitem{nehadiffexpo}
newblock N. Verma and S. S. Kumar,
newblock Higher Order Differential Subordination for $mathcal{S}^{*}_e$,
newblock arXiv e-prints, pp.arXiv:2306.11215(2023).
bibitem{zap}
newblock P. Zaprawa,
newblock Third Hankel determinants for subclasses of univalent functions,
newblock Mediterr. J. Math. {bf 14} (2017), no.~1, Paper No. 19, 10 pp.
bibitem{zap2019}
newblock P. Zaprawa,
newblock Hankel determinants for univalent functions related to the exponential function,
newblock Symm. {bf 11} (2019), no.~3, Paper No. 10, 1211 pp.