Conformal bounds for the first eigenvalue of the $\left(p,q\right)$-Laplacian system

Main Article Content

Mohammad Javad Habibi Vosta Kolaei
Shahroud

Abstract

Consider $\left(M,g\right)$ as an $m$-dimensional compact connected Riemannian manifold without boundary. In this paper, we investigate the first eigenvalue $\lambda_{1,p,q}$ of the $\left(p,q\right)$-Laplacian system on $M$. Also, in the case of $p,q >n$ we will show that for arbitrary large $\lambda_{1,p,q}$ there exists a Riemannian metric of volume one conformal to the standard metric of $\mathbb{S}^{m}$.

Article Details

How to Cite
Habibi Vosta Kolaei, M. J., & Azami, S. (2024). Conformal bounds for the first eigenvalue of the $\left(p,q\right)$-Laplacian system. Tamkang Journal of Mathematics, 55(4), 371–389. https://doi.org/10.5556/j.tkjm.55.2024.5188
Section
Papers

References

bibitem{az} S. Azami, textit{The first eigenvalue of some $left(p,qright)$-Laplacian and geometric estimate}, Commun. linebreak Korean Math. Soc., 33 (2018), 317-323.

bibitem{be} A. Besenyei, textit{Picard's weighty proof of Chebyshev's sum inequality}, MAA Mathematics Magazine. Vol 88, 2015.

bibitem{brown} K. Brown and Y. Zhang, textit{On the system of reaction-diffusion equations describing a population with two age groups}, J. Math. Anal. Appl. 282, (2003), 444-452.

bibitem{choi} Y. Choi, Z. Huan and R. Lui, textit{Global existence of solutions of a strongly coupled quasilinear parabolic system with application to electrochemistry}, J. Diff. Equ. 194, (2003), 406-432.

bibitem{con} A. Constantin, J. Escher and Z. Yin, textit{Global solutions for quasilinear parabolic systems}, J. Diff. Equ. 197, (2004), 73-84.

bibitem{dan} E. Dancer and Y. Du, textit{Effects of certain degeneracies in the predator-prey model}, SIAM J. Math. Anal. 34, (2002), 292-314.

bibitem{el} A. El Soufi and S. Ilias, textit{Immersion minimales, premi' er valeur propre du Laplacien et volume conforme}, Math. Ann., 275 (1986), 257-267.

bibitem{ga} M. Gaffney, textit{A special Stokes's theorem for complete Riemannian manifolds}, Ann. Math., 60 (1) (1954), 140-145.

bibitem{ga1} M. Gaffney, textit{The heat equation method of Milgram and Rosenbeloom for open Riemannian manifolds}, Ann. Math., 60 (3) (1954), 458-466.

bibitem{ha} M. Habibi Vosta Kolaei and S. Azami, textit{Geometric estimates of the first eigenvalue of $left(p,qright)$-elliptic quasilinear system under integral curvature condition}, J. Part. Diff. Eq., 34(2021), 348-368.

bibitem{li} P. Li and Y. Yau, textit{A new conformal invariant and it's application to the Wilmore conjecture and the first eigenvalue of compact surfaces}, Invent. Math., 69(1982), 269-291.

bibitem{ma1} J. Mao, textit{A class of rotationally symmetric quantum layers of dimention $4$}, J. Math. Anal. Appl., 397 (2) (2013), 791-799.

bibitem{ma} A. Matei, textit{First eigenvalue for the $p$-Laplace operator}, Nonlinear Anal. Ser. A 39 (8) (2000), 1051-1068.

bibitem{ma2} A. Matei, textit{Conformal bounds for the first eigenvalue of the $p$-Laplacian}, Nonlinear Anal. 80(2013), 88-95.

bibitem{na} A. Naber, D. Valtorta, textit{Sharp estimates on the first eigenvalue of the $p$-Laplacian with negative Ricci lower bound}, Math. Z. 277 (3-4) (2014), 867-891.

bibitem{val} D. Valtora, textit{Sharp estimate on the first eigenvalue of the $p$-Laplacian}, Nonlinear Anal. 75 (13) (2012), 4974-4994.

bibitem{zog} N. Zographopoulos, textit{On the principal eigenvalue of degenerate quasilinear elliptic systems}, Math. Nachr. 281, (2008), 1351-1365.

Most read articles by the same author(s)